7EGQ
| Co-transcriptional capping machineries in SARS-CoV-2 RTC: Coupling of N7-methyltransferase and 3'-5' exoribonuclease with polymerase reveals mechanisms for capping and proofreading | 分子名称: | Helicase, MAGNESIUM ION, Non-structural protein 10, ... | 著者 | Yan, L.M, Yang, Y.X, Li, M.Y, Zhang, Y, Zheng, L.T, Ge, J, Huang, Y.C, Liu, Z.Y, Wang, T, Gao, S, Zhang, R, Huang, Y.Y, Guddat, L.W, Gao, Y, Rao, Z.H, Lou, Z.Y. | 登録日 | 2021-03-25 | 公開日 | 2021-07-21 | 最終更新日 | 2024-06-05 | 実験手法 | ELECTRON MICROSCOPY (3.35 Å) | 主引用文献 | Coupling of N7-methyltransferase and 3'-5' exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell, 184, 2021
|
|
5LTT
| |
7ZE3
| PucD-LH2 complex from Rps. palustris | 分子名称: | (3'E)-3',4'-didehydro-1,2-dihydro-psi,psi-caroten-1-ol, BACTERIOCHLOROPHYLL A, Light-harvesting protein B-800-850 alpha chain, ... | 著者 | Qian, P, Cogdell, R.J, Nguyen-Phan, T.C. | 登録日 | 2022-03-30 | 公開日 | 2022-10-05 | 最終更新日 | 2022-11-23 | 実験手法 | ELECTRON MICROSCOPY (2.7 Å) | 主引用文献 | Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning. Proc.Natl.Acad.Sci.USA, 119, 2022
|
|
8XQB
| |
8A1D
| Structure of murine perforin-2 (Mpeg1) pore in ring form | 分子名称: | 2-acetamido-2-deoxy-beta-D-glucopyranose, CYCLOHEXYL-HEXYL-BETA-D-MALTOSIDE, Macrophage-expressed gene 1 protein | 著者 | Yu, X, Ni, T, Zhang, P, Gilbert, R. | 登録日 | 2022-06-01 | 公開日 | 2022-07-20 | 最終更新日 | 2022-12-14 | 実験手法 | ELECTRON MICROSCOPY (3 Å) | 主引用文献 | Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation. Embo J., 41, 2022
|
|
6XCM
| |
5LZU
| Structure of the mammalian ribosomal termination complex with accommodated eRF1 | 分子名称: | 18S ribosomal RNA, 28S ribosomal RNA, 40S ribosomal protein S12, ... | 著者 | Shao, S, Murray, J, Brown, A, Taunton, J, Ramakrishnan, V, Hegde, R.S. | 登録日 | 2016-10-02 | 公開日 | 2016-11-30 | 最終更新日 | 2024-05-15 | 実験手法 | ELECTRON MICROSCOPY (3.75 Å) | 主引用文献 | Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell, 167, 2016
|
|
8XOO
| |
5LZA
| Structure of the 70S ribosome with SECIS-mRNA and P-site tRNA (Initial complex, IC) | 分子名称: | 16S ribosomal RNA, 23S ribosomal RNA, 30S ribosomal protein S10, ... | 著者 | Fischer, N, Neumann, P, Bock, L.V, Maracci, C, Wang, Z, Paleskava, A, Konevega, A.L, Schroeder, G.F, Grubmueller, H, Ficner, R, Rodnina, M.V, Stark, H. | 登録日 | 2016-09-29 | 公開日 | 2016-11-23 | 最終更新日 | 2024-04-24 | 実験手法 | ELECTRON MICROSCOPY (3.6 Å) | 主引用文献 | The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature, 540, 2016
|
|
7ZE8
| PucE-LH2 complex from Rps. palustris | 分子名称: | 1,2-Dihydro-psi,psi-caroten-1-ol, BACTERIOCHLOROPHYLL A, Light-harvesting protein, ... | 著者 | Qian, P, Cogdell, R.J, Nguyen-Phan, T.C. | 登録日 | 2022-03-30 | 公開日 | 2022-10-05 | 最終更新日 | 2024-11-06 | 実験手法 | ELECTRON MICROSCOPY (3.6 Å) | 主引用文献 | Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning. Proc.Natl.Acad.Sci.USA, 119, 2022
|
|
5LZZ
| Structure of the mammalian rescue complex with Pelota and Hbs1l (combined) | 分子名称: | 18S ribosomal RNA, 28S ribosomal RNA, 40S ribosomal protein S12, ... | 著者 | Shao, S, Murray, J, Brown, A, Taunton, J, Ramakrishnan, V, Hegde, R.S. | 登録日 | 2016-10-02 | 公開日 | 2016-11-30 | 最終更新日 | 2024-10-09 | 実験手法 | ELECTRON MICROSCOPY (3.47 Å) | 主引用文献 | Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell, 167, 2016
|
|
6X6T
| Cryo-EM structure of an Escherichia coli coupled transcription-translation complex B1 (TTC-B1) containing an mRNA with a 24 nt long spacer, transcription factors NusA and NusG, and fMet-tRNAs at P-site and E-site | 分子名称: | 16S rRNA, 23S rRNA, 30S ribosomal protein S1, ... | 著者 | Molodtsov, V, Ebright, R.H, Wang, C, Su, M. | 登録日 | 2020-05-29 | 公開日 | 2020-09-02 | 最終更新日 | 2024-11-06 | 実験手法 | ELECTRON MICROSCOPY (3.2 Å) | 主引用文献 | Structural basis of transcription-translation coupling. Science, 369, 2020
|
|
6TXH
| Crystal structure of thermotoga maritima Ferritin in apo form | 分子名称: | EICOSANE, Ferritin, GLYCEROL, ... | 著者 | Wilk, P, Grudnik, P, Kumar, M, Heddle, J, Chakraborti, S. | 登録日 | 2020-01-14 | 公開日 | 2021-07-28 | 最終更新日 | 2024-01-24 | 実験手法 | X-RAY DIFFRACTION (2.198 Å) | 主引用文献 | A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale, 13, 2021
|
|
5M32
| Human 26S proteasome in complex with Oprozomib | 分子名称: | 26S protease regulatory subunit 10B, 26S protease regulatory subunit 4, 26S protease regulatory subunit 6A, ... | 著者 | Haselbach, D, Schrader, J, Lambrecht, F, Henneberg, F, Chari, A, Stark, H. | 登録日 | 2016-10-14 | 公開日 | 2017-07-05 | 最終更新日 | 2019-12-11 | 実験手法 | ELECTRON MICROSCOPY (3.8 Å) | 主引用文献 | Long-range allosteric regulation of the human 26S proteasome by 20S proteasome-targeting cancer drugs. Nat Commun, 8, 2017
|
|
6XIR
| Cryo-EM Structure of K63 Ubiquitinated Yeast Translocating Ribosome under Oxidative Stress | 分子名称: | 18S ribosomal RNA, 35S ribosomal RNA, 40S ribosomal protein S0-A, ... | 著者 | Zhou, Y, Bartesaghi, A, Silva, G.M. | 登録日 | 2020-06-21 | 公開日 | 2020-08-26 | 最終更新日 | 2024-10-23 | 実験手法 | ELECTRON MICROSCOPY (3.2 Å) | 主引用文献 | Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proc.Natl.Acad.Sci.USA, 117, 2020
|
|
6TXL
| Crystal structure of thermotoga maritima E65Q Ferritin | 分子名称: | EICOSANE, FE (III) ION, Ferritin, ... | 著者 | Wilk, P, Grudnik, P, Kumar, M, Heddle, J, Chakraborti, S. | 登録日 | 2020-01-14 | 公開日 | 2021-07-28 | 最終更新日 | 2024-01-24 | 実験手法 | X-RAY DIFFRACTION (2.099 Å) | 主引用文献 | A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale, 13, 2021
|
|
6TXN
| Crystal structure of thermotoga maritima Ferritin in apo form | 分子名称: | EICOSANE, Ferritin, GLYCEROL, ... | 著者 | Wilk, P, Grudnik, P, Kumar, M, Heddle, J, Chakraborti, S. | 登録日 | 2020-01-14 | 公開日 | 2021-07-28 | 最終更新日 | 2024-01-24 | 実験手法 | X-RAY DIFFRACTION (2.01 Å) | 主引用文献 | A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale, 13, 2021
|
|
6TXM
| Crystal structure of thermotoga maritima E65R Ferritin | 分子名称: | EICOSANE, Ferritin, GLYCEROL, ... | 著者 | Wilk, P, Grudnik, P, Kumar, M, Heddle, J, Chakraborti, S. | 登録日 | 2020-01-14 | 公開日 | 2021-07-28 | 最終更新日 | 2024-01-24 | 実験手法 | X-RAY DIFFRACTION (2.198 Å) | 主引用文献 | A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale, 13, 2021
|
|
6TXJ
| Crystal structure of thermotoga maritima A42V E65D Ferritin | 分子名称: | EICOSANE, FE (III) ION, Ferritin, ... | 著者 | Wilk, P, Grudnik, P, Kumar, M, Heddle, J, Chakraborti, S, Biela, A.P. | 登録日 | 2020-01-14 | 公開日 | 2021-07-28 | 最終更新日 | 2024-01-24 | 実験手法 | X-RAY DIFFRACTION (2.17 Å) | 主引用文献 | A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale, 13, 2021
|
|
8XPM
| |
6TXK
| Crystal structure of thermotoga maritima E65K Ferritin | 分子名称: | EICOSANE, FE (III) ION, Ferritin, ... | 著者 | Wilk, P, Grudnik, P, Kumar, M, Heddle, J, Chakraborti, S. | 登録日 | 2020-01-14 | 公開日 | 2021-07-28 | 最終更新日 | 2024-01-24 | 実験手法 | X-RAY DIFFRACTION (2.359 Å) | 主引用文献 | A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale, 13, 2021
|
|
6TXI
| Crystal structure of thermotoga maritima E65A Ferritin | 分子名称: | EICOSANE, FE (III) ION, Ferritin, ... | 著者 | Wilk, P, Grudnik, P, Kumar, M, Heddle, J, Chakraborti, S. | 登録日 | 2020-01-14 | 公開日 | 2021-07-28 | 最終更新日 | 2024-01-24 | 実験手法 | X-RAY DIFFRACTION (1.759 Å) | 主引用文献 | A single residue can modulate nanocage assembly in salt dependent ferritin. Nanoscale, 13, 2021
|
|
6XCN
| |
5LF3
| Human 20S proteasome complex with Bortezomib at 2.1 Angstrom | 分子名称: | CHLORIDE ION, MAGNESIUM ION, N-[(1R)-1-(DIHYDROXYBORYL)-3-METHYLBUTYL]-N-(PYRAZIN-2-YLCARBONYL)-L-PHENYLALANINAMIDE, ... | 著者 | Schrader, J, Henneberg, F, Mata, R, Tittmann, K, Schneider, T.R, Stark, H, Bourenkov, G, Chari, A. | 登録日 | 2016-06-30 | 公開日 | 2016-08-17 | 最終更新日 | 2024-01-10 | 実験手法 | X-RAY DIFFRACTION (2.1 Å) | 主引用文献 | The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science, 353, 2016
|
|
6TWR
| |