8D49
 
 | |
8D4B
 
 | Structure of Cas12a2 ternary complex | 分子名称: | OrfB_Zn_ribbon domain-containing protein, RNA (28-MER), RNA (41-MER) | 著者 | Bravo, J.P.K, Taylor, D.W. | 登録日 | 2022-06-01 | 公開日 | 2023-01-18 | 最終更新日 | 2024-06-12 | 実験手法 | ELECTRON MICROSCOPY (2.92 Å) | 主引用文献 | RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2. Nature, 613, 2023
|
|
7MEJ
 
 | |
7ME7
 
 | |
8T6O
 
 | SpRY-Cas9:gRNA complex targeting TAC PAM DNA with 0 bp R-loop | 分子名称: | CRISPR-associated endonuclease Cas9/Csn1, NTS, TS, ... | 著者 | Hibshman, G.N, Bravo, J.P.K, Taylor, D.W. | 登録日 | 2023-06-16 | 公開日 | 2024-05-01 | 最終更新日 | 2025-05-14 | 実験手法 | ELECTRON MICROSCOPY (3.1 Å) | 主引用文献 | Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9. Nat Commun, 15, 2024
|
|
8SFJ
 
 | WT CRISPR-Cas12a with a 10bp R-loop | 分子名称: | CRISPR-associated endonuclease Cas12a, DNA (5'-D(P*CP*AP*CP*TP*TP*AP*TP*CP*AP*CP*TP*AP*AP*AP*AP*GP*AP*TP*CP*GP*GP*AP*AP*G)-3'), DNA (5'-D(P*CP*TP*TP*CP*CP*GP*AP*TP*CP*TP*TP*TP*TP*AP*GP*TP*GP*AP*T)-3'), ... | 著者 | Strohkendl, I, Taylor, D.W. | 登録日 | 2023-04-11 | 公開日 | 2024-07-03 | 最終更新日 | 2025-01-22 | 実験手法 | ELECTRON MICROSCOPY (3.6 Å) | 主引用文献 | Cas12a domain flexibility guides R-loop formation and forces RuvC resetting. Mol.Cell, 84, 2024
|
|
8SFL
 
 | WT CRISPR-Cas12a with a 15bp R-loop | 分子名称: | CRISPR-associated endonuclease Cas12a, DNA (40-MER), RNA (34-MER) | 著者 | Strohkendl, I, Taylor, D.W. | 登録日 | 2023-04-11 | 公開日 | 2024-07-03 | 最終更新日 | 2025-01-22 | 実験手法 | ELECTRON MICROSCOPY (3.3 Å) | 主引用文献 | Cas12a domain flexibility guides R-loop formation and forces RuvC resetting. Mol.Cell, 84, 2024
|
|
8SFO
 
 | |
8SFH
 
 | WT CRISPR-Cas12a with a 5bp R-loop | 分子名称: | CRISPR-associated endonuclease Cas12a, DNA (32-MER), RNA (27-MER) | 著者 | Strohkendl, I, Taylor, D.W. | 登録日 | 2023-04-11 | 公開日 | 2024-07-03 | 最終更新日 | 2025-01-22 | 実験手法 | ELECTRON MICROSCOPY (3.4 Å) | 主引用文献 | Cas12a domain flexibility guides R-loop formation and forces RuvC resetting. Mol.Cell, 84, 2024
|
|
6MDR
 
 | Cryo-EM structure of the Ceru+32/GFP-17 protomer | 分子名称: | Ceru+32, GFP-17 | 著者 | Simon, A.J, Zhou, Y, Ramasubramani, V, Glaser, J, Pothukuchy, A, Golihar, J, Gerberich, J.C, Leggere, J.C, Morrow, B.R, Jung, C, Glotzer, S.C, Taylor, D.W, Ellington, A.D. | 登録日 | 2018-09-05 | 公開日 | 2019-01-23 | 最終更新日 | 2024-03-13 | 実験手法 | ELECTRON MICROSCOPY (3.47 Å) | 主引用文献 | Supercharging enables organized assembly of synthetic biomolecules. Nat Chem, 11, 2019
|
|
7S4V
 
 | Cas9 bound to 12-14MM DNA, 60 min time-point, kinked conformation | 分子名称: | CRISPR-associated endonuclease Cas9/Csn1, NTS, TS, ... | 著者 | Bravo, J.P.K, Taylor, D.W, Liu, M.S, Johnson, K.A. | 登録日 | 2021-09-09 | 公開日 | 2022-03-02 | 最終更新日 | 2025-05-14 | 実験手法 | ELECTRON MICROSCOPY (3.28 Å) | 主引用文献 | Structural basis for mismatch surveillance by CRISPR-Cas9. Nature, 603, 2022
|
|
8FD8
 
 | human 15-PGDH with NADH bound | 分子名称: | 1,4-DIHYDRONICOTINAMIDE ADENINE DINUCLEOTIDE, 15-hydroxyprostaglandin dehydrogenase [NAD(+)] | 著者 | Huang, W, Taylor, D. | 登録日 | 2022-12-02 | 公開日 | 2023-03-08 | 最終更新日 | 2025-05-14 | 実験手法 | ELECTRON MICROSCOPY (3.3 Å) | 主引用文献 | Small molecule inhibitors of 15-PGDH exploit a physiologic induced-fit closing system. Nat Commun, 14, 2023
|
|
8CVN
 
 | Cryo-EM Structure of Human 15-PGDH in Complex with Small Molecule SW209415 | 分子名称: | 1,4-DIHYDRONICOTINAMIDE ADENINE DINUCLEOTIDE, 15-hydroxyprostaglandin dehydrogenase [NAD(+)], 2-[butyl(oxidanyl)-$l^{3}-sulfanyl]-4-(2,3-dimethylimidazol-4-yl)-6-(1,3-thiazol-2-yl)thieno[2,3-b]pyridin-3-amine | 著者 | Huang, W, Taylor, D.J. | 登録日 | 2022-05-18 | 公開日 | 2023-03-01 | 最終更新日 | 2024-06-12 | 実験手法 | ELECTRON MICROSCOPY (2.4 Å) | 主引用文献 | Small molecule inhibitors of 15-PGDH exploit a physiologic induced-fit closing system. Nat Commun, 14, 2023
|
|
8UMF
 
 | |
8S9T
 
 | |
7TUH
 
 | Crystal structure of anti-tapasin PaSta2-Fab | 分子名称: | PaSta2 Fab heavy chain, PaSta2 Fab kappa light chain | 著者 | Jiang, J, Natarajan, K, Taylor, D.K, Boyd, L.F, Margulies, D.H. | 登録日 | 2022-02-02 | 公開日 | 2022-09-07 | 最終更新日 | 2024-11-20 | 実験手法 | X-RAY DIFFRACTION (2.3 Å) | 主引用文献 | Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation. Nat Commun, 13, 2022
|
|
6NTS
 
 | Protein Phosphatase 2A (Aalpha-B56alpha-Calpha) holoenzyme in complex with a Small Molecule Activator of PP2A (SMAP) | 分子名称: | MANGANESE (II) ION, N-[(1R,2R,3S)-2-hydroxy-3-(10H-phenoxazin-10-yl)cyclohexyl]-4-(trifluoromethoxy)benzene-1-sulfonamide, Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform, ... | 著者 | Huang, W, Taylor, D. | 登録日 | 2019-01-30 | 公開日 | 2020-05-06 | 最終更新日 | 2024-11-06 | 実験手法 | ELECTRON MICROSCOPY (3.63 Å) | 主引用文献 | Selective PP2A Enhancement through Biased Heterotrimer Stabilization. Cell, 181, 2020
|
|
8CXN
 
 | |
8CWL
 
 | |
8S9U
 
 | |
8S9V
 
 | |
8TZV
 
 | Apo form of human ATE1 | 分子名称: | Isoform ATE1-2 of Arginyl-tRNA--protein transferase 1, ZINC ION | 著者 | Huang, W, Zhang, Y, Taylor, D.J. | 登録日 | 2023-08-28 | 公開日 | 2024-08-14 | 最終更新日 | 2025-05-14 | 実験手法 | ELECTRON MICROSCOPY (2.8 Å) | 主引用文献 | Oligomerization and a distinct tRNA-binding loop are important regulators of human arginyl-transferase function. Nat Commun, 15, 2024
|
|
8CY7
 
 | |
8UAU
 
 | human ATE1 in complex with Arg-tRNA and a peptide substrate | 分子名称: | Isoform ATE1-2 of Arginyl-tRNA--protein transferase 1, RNA (76-MER), ZINC ION, ... | 著者 | Huang, W, Zhang, Y, Taylor, D.J. | 登録日 | 2023-09-22 | 公開日 | 2024-08-14 | 実験手法 | ELECTRON MICROSCOPY (5.7 Å) | 主引用文献 | Oligomerization and a distinct tRNA-binding loop are important regulators of human arginyl-transferase function. Nat Commun, 15, 2024
|
|
7TUG
 
 | Crystal structure of Tapasin in complex with PaSta2-Fab | 分子名称: | 2-acetamido-2-deoxy-beta-D-glucopyranose, PaSta2 Fab heavy chain, PaSta2 Fab kappa light chain, ... | 著者 | Jiang, J, Natarajan, K, Taylor, D.K, Boyd, L.F, Margulies, D.H. | 登録日 | 2022-02-02 | 公開日 | 2022-09-07 | 最終更新日 | 2024-11-13 | 実験手法 | X-RAY DIFFRACTION (3.9 Å) | 主引用文献 | Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation. Nat Commun, 13, 2022
|
|