[English] 日本語
Yorodumi
- PDB-2vuk: Structure of the p53 core domain mutant Y220C bound to the stabil... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 2vuk
TitleStructure of the p53 core domain mutant Y220C bound to the stabilizing small-molecule drug PhiKan083
ComponentsCELLULAR TUMOR ANTIGEN P53
KeywordsTRANSCRIPTION / METAL BINDING / PHOSPHOPROTEIN / UBL CONJUGATION / ACTIVATOR / CELL CYCLE / ACETYLATION / METHYLATION / ZINC / CANCER / NUCLEUS / APOPTOSIS / CYTOPLASM / TUMOR SUPPRESSOR / VIRTUAL SCREENING / SECOND-SITE SUPPRESSOR MUTATION / COVALENT PROTEIN-RNA LINKAGE / SMALL-MOLECULE DRUG / ALTERNATIVE SPLICING / P53 DNA- BINDING DOMAIN / TRANSCRIPTION REGULATION / NUCLEAR PROTEIN / SURFACE CREVICE / DISEASE MUTATION / PROTEIN STABILIZATION / HOST-VIRUS INTERACTION / LI-FRAUMENI SYNDROME / ENDOPLASMIC RETICULUM / METAL-BINDING / ANTI-ONCOGENE / SUPERSTABLE MUTANT / DNA-BINDING PROTEIN / DNA BINDING / DNA-BINDING / POLYMORPHISM / GLYCOPROTEIN
Function / homology
Function and homology information


Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Activation of NOXA and translocation to mitochondria / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity ...Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Activation of NOXA and translocation to mitochondria / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity / negative regulation of helicase activity / regulation of cell cycle G2/M phase transition / intrinsic apoptotic signaling pathway in response to hypoxia / regulation of fibroblast apoptotic process / oxidative stress-induced premature senescence / oligodendrocyte apoptotic process / negative regulation of miRNA processing / positive regulation of thymocyte apoptotic process / regulation of tissue remodeling / glucose catabolic process to lactate via pyruvate / positive regulation of mitochondrial membrane permeability / negative regulation of mitophagy / positive regulation of programmed necrotic cell death / mRNA transcription / bone marrow development / circadian behavior / histone deacetylase regulator activity / germ cell nucleus / T cell lineage commitment / regulation of mitochondrial membrane permeability involved in apoptotic process / RUNX3 regulates CDKN1A transcription / regulation of DNA damage response, signal transduction by p53 class mediator / TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain / TP53 Regulates Transcription of Death Receptors and Ligands / Activation of PUMA and translocation to mitochondria / DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator / B cell lineage commitment / thymocyte apoptotic process / negative regulation of glial cell proliferation / negative regulation of neuroblast proliferation / Regulation of TP53 Activity through Association with Co-factors / mitochondrial DNA repair / Formation of Senescence-Associated Heterochromatin Foci (SAHF) / TP53 Regulates Transcription of Caspase Activators and Caspases / ER overload response / positive regulation of release of cytochrome c from mitochondria / negative regulation of DNA replication / positive regulation of cardiac muscle cell apoptotic process / TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain / entrainment of circadian clock by photoperiod / cardiac septum morphogenesis / PI5P Regulates TP53 Acetylation / Association of TriC/CCT with target proteins during biosynthesis / necroptotic process / Zygotic genome activation (ZGA) / positive regulation of execution phase of apoptosis / TP53 Regulates Transcription of Genes Involved in Cytochrome C Release / TFIID-class transcription factor complex binding / rRNA transcription / negative regulation of telomere maintenance via telomerase / SUMOylation of transcription factors / intrinsic apoptotic signaling pathway by p53 class mediator / general transcription initiation factor binding / intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress / Transcriptional Regulation by VENTX / DNA damage response, signal transduction by p53 class mediator / response to X-ray / replicative senescence / Pyroptosis / mitophagy / cellular response to UV-C / positive regulation of RNA polymerase II transcription preinitiation complex assembly / neuroblast proliferation / hematopoietic stem cell differentiation / negative regulation of reactive oxygen species metabolic process / intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / somitogenesis / embryonic organ development / chromosome organization / T cell proliferation involved in immune response / type II interferon-mediated signaling pathway / glial cell proliferation / viral process / cis-regulatory region sequence-specific DNA binding / TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest / hematopoietic progenitor cell differentiation / cellular response to actinomycin D / positive regulation of intrinsic apoptotic signaling pathway / cellular response to glucose starvation / core promoter sequence-specific DNA binding / negative regulation of stem cell proliferation / mitotic G1 DNA damage checkpoint signaling / negative regulation of fibroblast proliferation / gastrulation / MDM2/MDM4 family protein binding / tumor necrosis factor-mediated signaling pathway / response to salt stress / cardiac muscle cell apoptotic process / 14-3-3 protein binding / Regulation of TP53 Activity through Acetylation
Similarity search - Function
Immunoglobulin-like - #720 / Cellular tumor antigen p53, transactivation domain 2 / Transactivation domain 2 / p53 transactivation domain / P53 transactivation motif / p53 family signature. / p53, tetramerisation domain / P53 tetramerisation motif / p53, DNA-binding domain / P53 DNA-binding domain ...Immunoglobulin-like - #720 / Cellular tumor antigen p53, transactivation domain 2 / Transactivation domain 2 / p53 transactivation domain / P53 transactivation motif / p53 family signature. / p53, tetramerisation domain / P53 tetramerisation motif / p53, DNA-binding domain / P53 DNA-binding domain / p53 tumour suppressor family / p53-like tetramerisation domain superfamily / p53/RUNT-type transcription factor, DNA-binding domain superfamily / p53-like transcription factor, DNA-binding / Immunoglobulin-like / Sandwich / Mainly Beta
Similarity search - Domain/homology
1-(9-ethyl-9H-carbazol-3-yl)-N-methylmethanamine / Cellular tumor antigen p53
Similarity search - Component
Biological speciesHOMO SAPIENS (human)
MethodX-RAY DIFFRACTION / SYNCHROTRON / MOLECULAR REPLACEMENT / Resolution: 1.5 Å
AuthorsJoerger, A.C. / Boeckler, F.M. / Fersht, A.R.
Citation
Journal: Proc.Natl.Acad.Sci.USA / Year: 2008
Title: Targeted Rescue of a Destabilized Mutant of P53 by an in Silico Screened Drug.
Authors: Boeckler, F.M. / Joerger, A.C. / Jaggi, G. / Rutherford, T.J. / Veprintsev, D.B. / Fersht, A.R.
#1: Journal: Proc.Natl.Acad.Sci.USA / Year: 2006
Title: Structural Basis for Understanding Oncogenic P53 Mutations and Designing Rescue Drugs
Authors: Joerger, A.C. / Ang, H.-C. / Fersht, A.R.
History
DepositionMay 26, 2008Deposition site: PDBE / Processing site: PDBE
Revision 1.0Jul 22, 2008Provider: repository / Type: Initial release
Revision 1.1May 8, 2011Group: Version format compliance
Revision 1.2Jul 13, 2011Group: Version format compliance
Revision 1.3May 8, 2019Group: Data collection / Experimental preparation / Other
Category: database_PDB_rev / database_PDB_rev_record ...database_PDB_rev / database_PDB_rev_record / exptl_crystal_grow / pdbx_database_proc / pdbx_database_status
Item: _exptl_crystal_grow.method / _exptl_crystal_grow.temp / _pdbx_database_status.recvd_author_approval
Revision 1.4Dec 13, 2023Group: Data collection / Database references ...Data collection / Database references / Derived calculations / Other / Refinement description
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / pdbx_database_status / pdbx_initial_refinement_model / pdbx_struct_conn_angle / struct_conn
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession ..._database_2.pdbx_DOI / _database_2.pdbx_database_accession / _pdbx_database_status.status_code_sf / _pdbx_struct_conn_angle.ptnr1_auth_comp_id / _pdbx_struct_conn_angle.ptnr1_auth_seq_id / _pdbx_struct_conn_angle.ptnr1_label_atom_id / _pdbx_struct_conn_angle.ptnr1_label_comp_id / _pdbx_struct_conn_angle.ptnr1_label_seq_id / _pdbx_struct_conn_angle.ptnr3_auth_comp_id / _pdbx_struct_conn_angle.ptnr3_auth_seq_id / _pdbx_struct_conn_angle.ptnr3_label_atom_id / _pdbx_struct_conn_angle.ptnr3_label_comp_id / _pdbx_struct_conn_angle.ptnr3_label_seq_id / _pdbx_struct_conn_angle.value / _struct_conn.pdbx_dist_value / _struct_conn.ptnr1_auth_comp_id / _struct_conn.ptnr1_auth_seq_id / _struct_conn.ptnr1_label_asym_id / _struct_conn.ptnr1_label_atom_id / _struct_conn.ptnr1_label_comp_id / _struct_conn.ptnr1_label_seq_id / _struct_conn.ptnr2_auth_comp_id / _struct_conn.ptnr2_auth_seq_id / _struct_conn.ptnr2_label_asym_id / _struct_conn.ptnr2_label_atom_id / _struct_conn.ptnr2_label_comp_id / _struct_conn.ptnr2_label_seq_id

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: CELLULAR TUMOR ANTIGEN P53
B: CELLULAR TUMOR ANTIGEN P53
hetero molecules


Theoretical massNumber of molelcules
Total (without water)49,4315
Polymers49,0622
Non-polymers3693
Water7,819434
1
A: CELLULAR TUMOR ANTIGEN P53
hetero molecules


Theoretical massNumber of molelcules
Total (without water)24,5962
Polymers24,5311
Non-polymers651
Water181
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
MethodPQS
2
B: CELLULAR TUMOR ANTIGEN P53
hetero molecules


Theoretical massNumber of molelcules
Total (without water)24,8353
Polymers24,5311
Non-polymers3042
Water181
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
MethodPQS
Unit cell
Length a, b, c (Å)65.093, 71.234, 105.207
Angle α, β, γ (deg.)90.00, 90.00, 90.00
Int Tables number19
Space group name H-MP212121

-
Components

#1: Protein CELLULAR TUMOR ANTIGEN P53 / TUMOR SUPPRESSOR P53 / PHOSPHOPROTEIN P53 / ANTIGEN NY-CO-13 / P53


Mass: 24530.811 Da / Num. of mol.: 2 / Fragment: DNA-BINDING DOMAIN, RESIDUES 94-312 / Mutation: YES
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) HOMO SAPIENS (human) / Production host: ESCHERICHIA COLI (E. coli) / Strain (production host): BL21 / References: UniProt: P04637
#2: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn
#3: Chemical ChemComp-P83 / 1-(9-ethyl-9H-carbazol-3-yl)-N-methylmethanamine


Mass: 238.328 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C16H18N2
#4: Water ChemComp-HOH / water


Mass: 18.015 Da / Num. of mol.: 434 / Source method: isolated from a natural source / Formula: H2O
Compound detailsENGINEERED RESIDUE IN CHAIN A, MET 133 TO LEU ENGINEERED RESIDUE IN CHAIN A, VAL 203 TO ALA ...ENGINEERED RESIDUE IN CHAIN A, MET 133 TO LEU ENGINEERED RESIDUE IN CHAIN A, VAL 203 TO ALA ENGINEERED RESIDUE IN CHAIN A, TYR 220 TO CYS ENGINEERED RESIDUE IN CHAIN A, ASN 239 TO TYR ENGINEERED RESIDUE IN CHAIN A, ASN 268 TO ASP ENGINEERED RESIDUE IN CHAIN B, MET 133 TO LEU ENGINEERED RESIDUE IN CHAIN B, VAL 203 TO ALA ENGINEERED RESIDUE IN CHAIN B, TYR 220 TO CYS ENGINEERED RESIDUE IN CHAIN B, ASN 239 TO TYR ENGINEERED RESIDUE IN CHAIN B, ASN 268 TO ASP
Nonpolymer details1-(9-ETHYL-9H-CARBAZOL-3-YL)-N-METHYLMETHANAMINE (P83): STABILIZING SMALL-MOLECULE COMPOUND, ...1-(9-ETHYL-9H-CARBAZOL-3-YL)-N-METHYLMETHANAMINE (P83): STABILIZING SMALL-MOLECULE COMPOUND, PHIKAN083, WHICH BINDS TO THE MUTATION-INDUCED SURFACE CREVICE NEXT TO CYS220. PHIKAN083 WAS SOAKED INTO CRYSTALS OF T-P53C-Y220C AT A CONCENTRATION OF 10 MM. IN CHAIN B OF THE ASYMMETRIC UNIT, THERE IS UNAMBIGUOUS ELECTRON DENSITY FOR A PHIKAN083 MOLECULE BOUND TO THE MUTATION-INDUCED SURFACE CLEFT, WHEREAS THE POCKET IS PARTLY OCCUPIED IN CHAIN A. FOR THE CAVITY IN CHAIN A, WE OBSERVED SIGNIFICANT DIFFERENCE DENSITY HAVING CONTRIBUTIONS FROM PHIKAN083 IN THE SAME BINDING MODE AS IN CHAIN B BUT BOUND WITH A LOW OCCUPANCY, AND A NETWORK OF WATER MOLECULES AS OBSERVED IN THE UNBOUND STATE, CF. PDB ENTRY 2J1X. WE DID NOT INCLUDE THE LIGAND IN THE FINAL MODEL OF CHAIN A.

-
Experimental details

-
Experiment

ExperimentMethod: X-RAY DIFFRACTION / Number of used crystals: 1

-
Sample preparation

CrystalDensity Matthews: 2.5 Å3/Da / Density % sol: 51 % / Description: NONE
Crystal growTemperature: 294 K / Method: vapor diffusion, sitting drop / pH: 7.2
Details: SITTING DROP VAPOR DIFFUSION AT 21 DEGREE C. PROTEIN SOLUTION: 6 MG/ML PROTEIN IN 25 MM SODIUM PHOSPHATE PH 7.2, 150 MM KCL, 5 MM DTT. RESERVOIR BUFFER: 100 MM HEPES PH 7.2, 19 % PEG 4000, 5 ...Details: SITTING DROP VAPOR DIFFUSION AT 21 DEGREE C. PROTEIN SOLUTION: 6 MG/ML PROTEIN IN 25 MM SODIUM PHOSPHATE PH 7.2, 150 MM KCL, 5 MM DTT. RESERVOIR BUFFER: 100 MM HEPES PH 7.2, 19 % PEG 4000, 5 MM DTT. CRYSTALS WERE SOAKED WITH 10 MM PHIKAN083 IN CRYO BUFFER CONTAINING 100 MM HEPES PH 7.2, 10 MM SODIUM PHOSPHATE PH 7.2, 19 % PEG 4000, 20 % GLYCEROL, 150 MM KCL.

-
Data collection

DiffractionMean temperature: 100 K
Diffraction sourceSource: SYNCHROTRON / Site: Diamond / Beamline: I04 / Wavelength: 0.9699
DetectorType: ADSC CCD / Detector: CCD / Date: Dec 7, 2007
RadiationProtocol: SINGLE WAVELENGTH / Monochromatic (M) / Laue (L): M / Scattering type: x-ray
Radiation wavelengthWavelength: 0.9699 Å / Relative weight: 1
ReflectionResolution: 1.5→65.1 Å / Num. obs: 76025 / % possible obs: 96.6 % / Redundancy: 5.6 % / Biso Wilson estimate: 13.8 Å2 / Rmerge(I) obs: 0.07 / Net I/σ(I): 17.7
Reflection shellResolution: 1.5→1.58 Å / Redundancy: 4.6 % / Rmerge(I) obs: 0.23 / Mean I/σ(I) obs: 5.6 / % possible all: 83.4

-
Processing

Software
NameVersionClassification
CNS1.2refinement
CNSphasing
RefinementMethod to determine structure: MOLECULAR REPLACEMENT
Starting model: PDB ENTRY 2J1X
Resolution: 1.5→65.1 Å / Cross valid method: THROUGHOUT
RfactorNum. reflection% reflectionSelection details
Rfree0.208 -5 %RANDOM
Rwork0.186 ---
obs0.186 76025 96.6 %-
Displacement parametersBiso mean: 15.9 Å2
Refinement stepCycle: LAST / Resolution: 1.5→65.1 Å
ProteinNucleic acidLigandSolventTotal
Num. atoms3066 0 20 434 3520
Refine LS restraints
Refine-IDTypeDev ideal
X-RAY DIFFRACTIONc_bond_d0.009
X-RAY DIFFRACTIONc_bond_d_na
X-RAY DIFFRACTIONc_bond_d_prot
X-RAY DIFFRACTIONc_angle_d
X-RAY DIFFRACTIONc_angle_d_na
X-RAY DIFFRACTIONc_angle_d_prot
X-RAY DIFFRACTIONc_angle_deg1.5
X-RAY DIFFRACTIONc_angle_deg_na
X-RAY DIFFRACTIONc_angle_deg_prot
X-RAY DIFFRACTIONc_dihedral_angle_d
X-RAY DIFFRACTIONc_dihedral_angle_d_na
X-RAY DIFFRACTIONc_dihedral_angle_d_prot
X-RAY DIFFRACTIONc_improper_angle_d
X-RAY DIFFRACTIONc_improper_angle_d_na
X-RAY DIFFRACTIONc_improper_angle_d_prot
X-RAY DIFFRACTIONc_mcbond_it
X-RAY DIFFRACTIONc_mcangle_it
X-RAY DIFFRACTIONc_scbond_it
X-RAY DIFFRACTIONc_scangle_it

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more