Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4V61

Homology model for the Spinach chloroplast 30S subunit fitted to 9.4A cryo-EM map of the 70S chlororibosome.

This is a non-PDB format compatible entry.
Summary for 4V61
Entry DOI10.2210/pdb4v61/pdb
Related3BBO
EMDB information1417
Descriptor16S rRNA, Ribosomal Protein S10, Ribosomal Protein S11, ... (53 entities in total)
Functional Keywordssmall ribosomal subunit, spinach chloroplast ribosome, ribonucleoprotein particle, macromolecular complex, ribosome
Biological sourceSpinacea oleracea (spinach)
More
Total number of polymer chains53
Total formula weight2447890.70
Authors
Sharma, M.R.,Wilson, D.N.,Datta, P.P.,Barat, C.,Schluenzen, F.,Fucini, P.,Agrawal, R.K. (deposition date: 2007-11-09, release date: 2014-07-09, Last modification date: 2024-02-28)
Primary citationSharma, M.R.,Wilson, D.N.,Datta, P.P.,Barat, C.,Schluenzen, F.,Fucini, P.,Agrawal, R.K.
Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins
Proc.Natl.Acad.Sci.Usa, 104:19315-19320, 2007
Cited by
PubMed Abstract: Protein synthesis in the chloroplast is carried out by chloroplast ribosomes (chloro-ribosome) and regulated in a light-dependent manner. Chloroplast or plastid ribosomal proteins (PRPs) generally are larger than their bacterial counterparts, and chloro-ribosomes contain additional plastid-specific ribosomal proteins (PSRPs); however, it is unclear to what extent these proteins play structural or regulatory roles during translation. We have obtained a three-dimensional cryo-EM map of the spinach 70S chloro-ribosome, revealing the overall structural organization to be similar to bacterial ribosomes. Fitting of the conserved portions of the x-ray crystallographic structure of the bacterial 70S ribosome into our cryo-EM map of the chloro-ribosome reveals the positions of PRP extensions and the locations of the PSRPs. Surprisingly, PSRP1 binds in the decoding region of the small (30S) ribosomal subunit, in a manner that would preclude the binding of messenger and transfer RNAs to the ribosome, suggesting that PSRP1 is a translation factor rather than a ribosomal protein. PSRP2 and PSRP3 appear to structurally compensate for missing segments of the 16S rRNA within the 30S subunit, whereas PSRP4 occupies a position buried within the head of the 30S subunit. One of the two PSRPs in the large (50S) ribosomal subunit lies near the tRNA exit site. Furthermore, we find a mass of density corresponding to chloro-ribosome recycling factor; domain II of this factor appears to interact with the flexible C-terminal domain of PSRP1. Our study provides evolutionary insights into the structural and functional roles that the PSRPs play during protein synthesis in chloroplasts.
PubMed: 18042701
DOI: 10.1073/pnas.0709856104
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (9.4 Å)
Structure validation

246905

PDB entries from 2025-12-31

PDB statisticsPDBj update infoContact PDBjnumon