7B8S
| Fusidic acid bound structure of bacterial efflux pump. | Descriptor: | DARPin, FUSIDIC ACID, Multidrug efflux pump subunit AcrB,Multidrug efflux pump subunit AcrB | Authors: | Wilhelm, J, Sjuts, H, Pos, K.M. | Deposit date: | 2020-12-13 | Release date: | 2021-10-20 | Last modified: | 2024-01-31 | Method: | X-RAY DIFFRACTION (2.3 Å) | Cite: | Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Nat Commun, 12, 2021
|
|
7B8T
| Levofloxacin bound structure of bacterial efflux pump. | Descriptor: | (3S)-9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid, DARPin, Multidrug efflux pump subunit AcrB,Multidrug efflux pump subunit AcrB | Authors: | Wilhelm, J, Sjuts, H, Pos, K.M. | Deposit date: | 2020-12-13 | Release date: | 2021-10-20 | Last modified: | 2024-01-31 | Method: | X-RAY DIFFRACTION (2.7 Å) | Cite: | Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Nat Commun, 12, 2021
|
|
7B8R
| Doxycycline bound structure of bacterial efflux pump. | Descriptor: | (4S,4AR,5S,5AR,6R,12AS)-4-(DIMETHYLAMINO)-3,5,10,12,12A-PENTAHYDROXY-6-METHYL-1,11-DIOXO-1,4,4A,5,5A,6,11,12A-OCTAHYDROTETRACENE-2-CARBOXAMIDE, DARPin, DI(HYDROXYETHYL)ETHER, ... | Authors: | Wilhelm, J, Sjuts, H, Pos, K.M. | Deposit date: | 2020-12-13 | Release date: | 2021-10-20 | Last modified: | 2024-01-31 | Method: | X-RAY DIFFRACTION (2.1 Å) | Cite: | Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Nat Commun, 12, 2021
|
|
6SV3
| Structure of coproheme-LmCpfC | Descriptor: | 1,3,5,8-TETRAMETHYL-PORPHINE-2,4,6,7-TETRAPROPIONIC ACID FERROUS COMPLEX, Ferrochelatase, GLYCEROL | Authors: | Hofbauer, S, Helm, J, Djinovic-Carugo, K, Furtmueller, P.G. | Deposit date: | 2019-09-17 | Release date: | 2019-12-18 | Last modified: | 2024-02-07 | Method: | X-RAY DIFFRACTION (1.64000869 Å) | Cite: | Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproheme in coproporphyrin ferrochelatase. Febs J., 287, 2020
|
|
6RWV
| Structure of apo-LmCpfC | Descriptor: | Ferrochelatase, GLYCEROL, PHOSPHATE ION, ... | Authors: | Hofbauer, S, Helm, J, Djinovic-Carugo, K, Furtmueller, P.G. | Deposit date: | 2019-06-06 | Release date: | 2019-12-18 | Last modified: | 2024-01-24 | Method: | X-RAY DIFFRACTION (1.6386379 Å) | Cite: | Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproheme in coproporphyrin ferrochelatase. Febs J., 287, 2020
|
|
4AIW
| GAPR-1 with bound inositol hexakisphosphate | Descriptor: | GOLGI-ASSOCIATED PLANT PATHOGENESIS-RELATED PROTEIN 1, INOSITOL HEXAKISPHOSPHATE | Authors: | Schouten, A, Gros, P, Helms, J.B. | Deposit date: | 2012-02-15 | Release date: | 2012-08-08 | Last modified: | 2023-12-20 | Method: | X-RAY DIFFRACTION (1.5 Å) | Cite: | Interaction of Gapr-1 with Lipid Bilayers is Regulated by Alternative Homodimerization. Biochim.Biophys.Acta, 1818, 2012
|
|
1SMB
| Crystal Structure of Golgi-Associated PR-1 protein | Descriptor: | 17kD fetal brain protein | Authors: | Serrano, R.L, Kuhn, A, Hendricks, A, Helms, J.B, Sinning, I, Groves, M.R. | Deposit date: | 2004-03-08 | Release date: | 2004-09-14 | Last modified: | 2011-07-13 | Method: | X-RAY DIFFRACTION (1.55 Å) | Cite: | Structural analysis of the human Golgi-associated plant pathogenesis related protein GAPR-1 implicates dimerization as a regulatory mechanism J.Mol.Biol., 339, 2004
|
|
3K1K
| Green fluorescent protein bound to enhancer nanobody | Descriptor: | Enhancer, Green Fluorescent Protein | Authors: | Kirchhofer, A, Helma, J, Schmidthals, K, Frauer, C, Cui, S, Karcher, A, Pellis, M, Muyldermans, S, Delucci, C.C, Cardoso, M.C, Leonhardt, H, Hopfner, K.-P, Rothbauer, U. | Deposit date: | 2009-09-28 | Release date: | 2009-12-08 | Last modified: | 2024-10-09 | Method: | X-RAY DIFFRACTION (2.15 Å) | Cite: | Modulation of protein properties in living cells using nanobodies Nat.Struct.Mol.Biol., 17, 2010
|
|
1IJZ
| |
3G9A
| Green fluorescent protein bound to minimizer nanobody | Descriptor: | Green fluorescent protein, Minimizer | Authors: | Kirchhofer, A, Helma, J, Schmidthals, K, Frauer, C, Cui, S, Karcher, A, Pellis, M, Muyldermans, S, Delucci, C.C, Cardoso, M.C, Leonhardt, H, Hopfner, K.-P, Rothbauer, U. | Deposit date: | 2009-02-13 | Release date: | 2009-12-08 | Last modified: | 2024-10-30 | Method: | X-RAY DIFFRACTION (1.614 Å) | Cite: | Modulation of protein properties in living cells using nanobodies Nat.Struct.Mol.Biol., 17, 2010
|
|
1IK0
| |
1Z91
| |
1ON1
| Bacillus Subtilis Manganese Transport Regulator (Mntr) Bound To Manganese, AB Conformation. | Descriptor: | MANGANESE (II) ION, Transcriptional regulator mntR | Authors: | Glasfeld, A, Guedon, E, Helmann, J.D, Brennan, R.G. | Deposit date: | 2003-02-26 | Release date: | 2003-07-15 | Last modified: | 2023-08-16 | Method: | X-RAY DIFFRACTION (1.75 Å) | Cite: | Structure of the Manganese-Bound Manganese Transport Regulator of Bacillus subtilis Nat.Struct.Biol., 10, 2003
|
|
1Z9C
| Crystal structure of OhrR bound to the ohrA promoter: Structure of MarR family protein with operator DNA | Descriptor: | DNA (29-MER), Organic hydroperoxide resistance transcriptional regulator | Authors: | Hong, M, Fuangthong, M, Helmann, J.D, Brennan, R.G. | Deposit date: | 2005-04-01 | Release date: | 2005-10-25 | Last modified: | 2024-02-14 | Method: | X-RAY DIFFRACTION (2.64 Å) | Cite: | Structure of an OhrR-ohrA Operator Complex Reveals the DNA Binding Mechanism of the MarR Family. Mol.Cell, 20, 2005
|
|
2K2G
| Solution structure of the wild-type catalytic domain of human matrix metalloproteinase 12 (MMP-12) in complex with a tight-binding inhibitor | Descriptor: | Macrophage metalloelastase, N-(dibenzo[b,d]thiophen-3-ylsulfonyl)-L-valine, ZINC ION | Authors: | Markus, M.A, Dwyer, B, Wolfrom, S, Li, J, Li, W, Malakian, K, Wilhelm, J, Tsao, D.H.H. | Deposit date: | 2008-04-01 | Release date: | 2008-05-20 | Last modified: | 2024-05-29 | Method: | SOLUTION NMR | Cite: | Solution structure of wild-type human matrix metalloproteinase 12 (MMP-12) in complex with a tight-binding inhibitor. J.Biomol.Nmr, 41, 2008
|
|
4MRO
| Human GKRP bound to AMG-5980 and S6P | Descriptor: | 2-(4-{4-[(6-aminopyridin-3-yl)sulfonyl]piperazin-1-yl}phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol, D-SORBITOL-6-PHOSPHATE, GLYCEROL, ... | Authors: | St Jean, D.J, Ashton, K.S, Bartberger, M.D, Chen, J, Chmait, S, Cupples, R, Galbreath, E, Helmering, J, Jordan, S.R, Liu, L, Kunz, K, Michelsen, K, Nishimura, N, Pennington, L.D, Poon, S.F, Sivits, G, Stec, M.M, Tamayo, N, Van, G, Yang, K, Norman, M.H, Fotsch, C, LLoyd, D.J, Hale, C. | Deposit date: | 2013-09-17 | Release date: | 2014-05-07 | Last modified: | 2024-04-03 | Method: | X-RAY DIFFRACTION (2.2 Å) | Cite: | Small molecule disruptors of the glucokinase-glucokinase regulatory protein interaction: 2. Leveraging structure-based drug design to identify analogues with improved pharmacokinetic profiles. J.Med.Chem., 57, 2014
|
|
4MSU
| Human GKRP bound to AMG-6861 and Sorbitol-6-phosphate | Descriptor: | 1,1,1,3,3,3-hexafluoro-2-{4-[4-(thiophen-2-ylsulfonyl)piperazin-1-yl]phenyl}propan-2-ol, D-SORBITOL-6-PHOSPHATE, GLYCEROL, ... | Authors: | Ashton, K.S, Andrews, K.L, Bryan, M.C, Chen, J, Chen, K, Chen, M, Chmait, S, Croghan, M, Cupples, R, Fotsch, C, Helmering, J, Jordan, S.R, Kurzeja, R.J, Michelsen, K, Pennington, L.D, Poon, S.F, Sivits, G, Van, G, Vonderfecht, S.L, Wahl, R.C, Zhang, J, Lloyd, D.J, Hale, C, St Jean, D.J. | Deposit date: | 2013-09-18 | Release date: | 2014-03-12 | Last modified: | 2024-02-28 | Method: | X-RAY DIFFRACTION (2.5 Å) | Cite: | Small Molecule Disruptors of the Glucokinase-Glucokinase Regulatory Protein Interaction: 1. Discovery of a Novel Tool Compound for in Vivo Proof-of-Concept. J.Med.Chem., 57, 2014
|
|
4MQU
| Human GKRP complexed to AMG-3969 and S6P | Descriptor: | 2-{4-[(2S)-4-[(6-aminopyridin-3-yl)sulfonyl]-2-(prop-1-yn-1-yl)piperazin-1-yl]phenyl}-1,1,1,3,3,3-hexafluoropropan-2-ol, D-SORBITOL-6-PHOSPHATE, GLYCEROL, ... | Authors: | St Jean, D.J, Ashton, K.S, Bartberger, M.D, Chen, J, Chmait, S, Cupples, R, Galbreath, E, Helmering, J, Jordan, S.R, Liu, L. | Deposit date: | 2013-09-16 | Release date: | 2014-05-07 | Last modified: | 2024-04-03 | Method: | X-RAY DIFFRACTION (2.22 Å) | Cite: | Small molecule disruptors of the glucokinase-glucokinase regulatory protein interaction: 2. Leveraging structure-based drug design to identify analogues with improved pharmacokinetic profiles. J.Med.Chem., 57, 2014
|
|
2EV0
| Bacillus subtilis manganese transport regulator (MNTR) bound to cadmium | Descriptor: | CADMIUM ION, Transcriptional regulator mntR | Authors: | Kliegman, J.I, Griner, S.L, Helmann, J.D, Brennan, R.G, Glasfeld, A. | Deposit date: | 2005-10-30 | Release date: | 2006-03-07 | Last modified: | 2023-08-23 | Method: | X-RAY DIFFRACTION (1.65 Å) | Cite: | Structural Basis for the Metal-Selective Activation of the Manganese Transport Regulator of Bacillus subtilis. Biochemistry, 45, 2006
|
|
2EV5
| Bacillus subtilis manganese transport regulator (MNTR) bound to calcium | Descriptor: | CALCIUM ION, Transcriptional regulator mntR | Authors: | Kliegman, J.I, Griner, S.L, Helmann, J.D, Brennan, R.G, Glasfeld, A. | Deposit date: | 2005-10-31 | Release date: | 2006-03-07 | Last modified: | 2023-08-23 | Method: | X-RAY DIFFRACTION (2 Å) | Cite: | Structural Basis for the Metal-Selective Activation of the Manganese Transport Regulator of Bacillus subtilis. Biochemistry, 45, 2006
|
|
2EV6
| Bacillus subtilis manganese transport regulator (MNTR) bound to zinc | Descriptor: | CITRATE ANION, GLYCEROL, Transcriptional regulator mntR, ... | Authors: | Kliegman, J.I, Griner, S.L, Helmann, J.D, Brennan, R.G, Glasfeld, A. | Deposit date: | 2005-10-31 | Release date: | 2006-03-07 | Last modified: | 2023-08-23 | Method: | X-RAY DIFFRACTION (1.7 Å) | Cite: | Structural Basis for the Metal-Selective Activation of the Manganese Transport Regulator of Bacillus subtilis. Biochemistry, 45, 2006
|
|
2F5E
| Bacillus subtilis manganese transport regulator (MNTR) bound to manganese, AB conformation, pH 6.5 | Descriptor: | MANGANESE (II) ION, Transcriptional regulator mntR | Authors: | Kliegman, J.I, Griner, S.L, Helmann, J.D, Brennan, R.G, Glasfeld, A. | Deposit date: | 2005-11-25 | Release date: | 2006-03-07 | Last modified: | 2023-08-23 | Method: | X-RAY DIFFRACTION (2.2 Å) | Cite: | Structural Basis for the Metal-Selective Activation of the Manganese Transport Regulator of Bacillus subtilis. Biochemistry, 45, 2006
|
|
2F5D
| Bacillus subtilis manganese transport regulator (MNTR) bound to manganese, AC conformation, pH 6.5 | Descriptor: | MANGANESE (II) ION, Transcriptional regulator mntR | Authors: | Kliegman, J.I, Griner, S.L, Helmann, J.D, Brennan, R.G, Glasfeld, A. | Deposit date: | 2005-11-25 | Release date: | 2006-03-07 | Last modified: | 2023-08-23 | Method: | X-RAY DIFFRACTION (1.9 Å) | Cite: | Structural Basis for the Metal-Selective Activation of the Manganese Transport Regulator of Bacillus subtilis. Biochemistry, 45, 2006
|
|
2XV6
| Crystal structure of the HIV-1 capsid protein C-terminal domain (146- 220) in complex with a camelid VHH. | Descriptor: | CAMELID VHH 9, CAPSID PROTEIN P24 | Authors: | Igonet, S, Vaney, M.C, Bartonova, V, Helma, J, Rothbauer, U, Leonhardt, H, Stura, E, Krausslich, H.-G, Rey, F.A. | Deposit date: | 2010-10-22 | Release date: | 2011-10-12 | Last modified: | 2023-12-20 | Method: | X-RAY DIFFRACTION (1.89 Å) | Cite: | Targeting HIV-1 Virion Formation with Nanobodies -Implications for the Design of Assembly Inhibitors To be Published
|
|
2XXC
| Crystal structure of a camelid VHH raised against the HIV-1 capsid protein C-terminal domain. | Descriptor: | CAMELID VHH 9 | Authors: | Igonet, S, Vaney, M.C, Bartonova, V, Helma, J, Rothbauer, U, Leonhardt, H, Stura, E, Krausslich, H.-G, Rey, F.A. | Deposit date: | 2010-11-10 | Release date: | 2011-10-12 | Last modified: | 2023-12-20 | Method: | X-RAY DIFFRACTION (1.67 Å) | Cite: | Targeting HIV-1 Virion Formation with Nanobodies -Implications for the Design of Assembly Inhibitors To be Published
|
|