8UI7
| |
8UII
| |
8UI8
| |
5XSP
| The catalytic domain of GdpP with 5'-pApA | Descriptor: | ADENOSINE MONOPHOSPHATE, MANGANESE (II) ION, Phosphodiesterase acting on cyclic dinucleotides | Authors: | Wang, F, Gu, L. | Deposit date: | 2017-06-15 | Release date: | 2018-01-31 | Last modified: | 2024-05-29 | Method: | X-RAY DIFFRACTION (2.146 Å) | Cite: | Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase Biochem. J., 475, 2018
|
|
5XT3
| The catalytic domain of GdpP with c-di-GMP | Descriptor: | 9,9'-[(2R,3R,3aS,5S,7aR,9R,10R,10aS,12S,14aR)-3,5,10,12-tetrahydroxy-5,12-dioxidooctahydro-2H,7H-difuro[3,2-d:3',2'-j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-2,9-diyl]bis(2-amino-1,9-dihydro-6H-purin-6-one), MANGANESE (II) ION, Phosphodiesterase acting on cyclic dinucleotides | Authors: | Wang, F, Gu, L. | Deposit date: | 2017-06-16 | Release date: | 2018-01-31 | Last modified: | 2023-11-22 | Method: | X-RAY DIFFRACTION (2.591 Å) | Cite: | Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase Biochem. J., 475, 2018
|
|
5XSI
| The catalytic domain of GdpP | Descriptor: | MANGANESE (II) ION, Phosphodiesterase acting on cyclic dinucleotides | Authors: | Wang, F, Gu, L. | Deposit date: | 2017-06-14 | Release date: | 2018-01-31 | Last modified: | 2024-03-27 | Method: | X-RAY DIFFRACTION (2.2 Å) | Cite: | Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase Biochem. J., 475, 2018
|
|
2Y1R
| Structure of MecA121 & ClpC N-domain complex | Descriptor: | ADAPTER PROTEIN MECA 1, NEGATIVE REGULATOR OF GENETIC COMPETENCE CLPC/MECB, S,R MESO-TARTARIC ACID | Authors: | Wang, F, Mei, Z.Q, Wang, J.W, Shi, Y.G. | Deposit date: | 2010-12-10 | Release date: | 2011-03-16 | Last modified: | 2023-12-20 | Method: | X-RAY DIFFRACTION (2.595 Å) | Cite: | Structure and Mechanism of the Hexameric Meca-Clpc Molecular Machine. Nature, 471, 2011
|
|
2Y1Q
| Crystal Structure of ClpC N-terminal Domain | Descriptor: | NEGATIVE REGULATOR OF GENETIC COMPETENCE CLPC/MECB, SULFATE ION | Authors: | Wang, F, Mei, Z.Q, Wang, J.W, Shi, Y.G. | Deposit date: | 2010-12-10 | Release date: | 2011-03-16 | Last modified: | 2024-05-08 | Method: | X-RAY DIFFRACTION (1.5 Å) | Cite: | Structure and Mechanism of the Hexameric Meca-Clpc Molecular Machine. Nature, 471, 2011
|
|
5XSN
| The catalytic domain of GdpP with c-di-AMP | Descriptor: | (2R,3R,3aS,5R,7aR,9R,10R,10aS,12R,14aR)-2,9-bis(6-amino-9H-purin-9-yl)octahydro-2H,7H-difuro[3,2-d:3',2'-j][1,3,7,9,2,8 ]tetraoxadiphosphacyclododecine-3,5,10,12-tetrol 5,12-dioxide, MANGANESE (II) ION, Phosphodiesterase acting on cyclic dinucleotides | Authors: | Wang, F, Gu, L. | Deposit date: | 2017-06-14 | Release date: | 2018-01-31 | Last modified: | 2023-11-22 | Method: | X-RAY DIFFRACTION (2.501 Å) | Cite: | Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase Biochem. J., 475, 2018
|
|
5XBW
| The structure of BrlR | Descriptor: | Probable transcriptional regulator | Authors: | Wang, F, Qing, H, Gu, L. | Deposit date: | 2017-03-21 | Release date: | 2018-05-02 | Last modified: | 2023-11-22 | Method: | X-RAY DIFFRACTION (3.109 Å) | Cite: | BrlR from Pseudomonas aeruginosa is a receptor for both cyclic di-GMP and pyocyanin. Nat Commun, 9, 2018
|
|
5XBI
| |
5XBT
| The structure of BrlR bound to c-di-GMP | Descriptor: | 9,9'-[(2R,3R,3aS,5S,7aR,9R,10R,10aS,12S,14aR)-3,5,10,12-tetrahydroxy-5,12-dioxidooctahydro-2H,7H-difuro[3,2-d:3',2'-j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-2,9-diyl]bis(2-amino-1,9-dihydro-6H-purin-6-one), DI(HYDROXYETHYL)ETHER, GLYCEROL, ... | Authors: | Wang, F, Qing, H, Gu, L. | Deposit date: | 2017-03-21 | Release date: | 2018-05-02 | Last modified: | 2024-03-27 | Method: | X-RAY DIFFRACTION (2.495 Å) | Cite: | BrlR from Pseudomonas aeruginosa is a receptor for both cyclic di-GMP and pyocyanin. Nat Commun, 9, 2018
|
|
7UQK
| |
7UQJ
| Cryo-EM structure of the S. cerevisiae chromatin remodeler Yta7 hexamer bound to ATPgS and histone H3 tail in state II | Descriptor: | ADENOSINE-5'-DIPHOSPHATE, ATPase histone chaperone YTA7, Histone H3, ... | Authors: | Wang, F, Feng, X, Li, H. | Deposit date: | 2022-04-19 | Release date: | 2023-02-01 | Last modified: | 2024-06-12 | Method: | ELECTRON MICROSCOPY (3 Å) | Cite: | The Saccharomyces cerevisiae Yta7 ATPase hexamer contains a unique bromodomain tier that functions in nucleosome disassembly. J.Biol.Chem., 299, 2022
|
|
7UQI
| |
7DE0
| |
7UII
| |
7UIT
| |
7UEG
| |
2LQI
| NMR structure of FOXO3a transactivation domains (CR2C-CR3) in complex with CBP KIX domain (2l3b conformation) | Descriptor: | CREB-binding protein, Forkhead box O3 | Authors: | Wang, F, Marshall, C.B, Yamamoto, K, Li, G.B, Gasmi-Seabrook, G.M.C, Okada, H, Mak, T.W, Ikura, M. | Deposit date: | 2012-03-06 | Release date: | 2012-05-16 | Last modified: | 2024-05-15 | Method: | SOLUTION NMR | Cite: | Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc.Natl.Acad.Sci.USA, 109, 2012
|
|
2LQH
| NMR structure of FOXO3a transactivation domains (CR2C-CR3) in complex with CBP KIX domain (2b3l conformation) | Descriptor: | CREB-binding protein, Forkhead box O3 | Authors: | Wang, F, Marshall, C.B, Yamamoto, K, Li, G.B, Gasmi-Seabrook, G.M.C, Okada, H, Mak, T.W, Ikura, M. | Deposit date: | 2012-03-06 | Release date: | 2012-05-16 | Last modified: | 2024-05-15 | Method: | SOLUTION NMR | Cite: | Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc.Natl.Acad.Sci.USA, 109, 2012
|
|
2NTV
| Mycobacterium leprae InhA bound with PTH-NAD adduct | Descriptor: | Enoyl-[ACP] reductase, {(2R,3S,4R,5R)-5-[(4S)-3-(AMINOCARBONYL)-4-(2-PROPYLISONICOTINOYL)PYRIDIN-1(4H)-YL]-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL}M ETHYL [(2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL]METHYL DIHYDROGEN DIPHOSPHATE | Authors: | Wang, F, Sacchettini, J.C. | Deposit date: | 2006-11-08 | Release date: | 2007-01-30 | Last modified: | 2023-08-30 | Method: | X-RAY DIFFRACTION (2.1 Å) | Cite: | Mechanism of thioamide drug action against tuberculosis and leprosy. J.Exp.Med., 204, 2007
|
|
2NTJ
| Mycobacterium tuberculosis InhA bound with PTH-NAD adduct | Descriptor: | Enoyl-[acyl-carrier-protein] reductase [NADH, {(2R,3S,4R,5R)-5-[(4S)-3-(AMINOCARBONYL)-4-(2-PROPYLISONICOTINOYL)PYRIDIN-1(4H)-YL]-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL}M ETHYL [(2R,3S,4R,5R)-5-(6-AMINO-9H-PURIN-9-YL)-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL]METHYL DIHYDROGEN DIPHOSPHATE | Authors: | Wang, F, Sacchettini, J.C. | Deposit date: | 2006-11-07 | Release date: | 2007-01-30 | Last modified: | 2023-08-30 | Method: | X-RAY DIFFRACTION (2.5 Å) | Cite: | Mechanism of thioamide drug action against tuberculosis and leprosy. J.Exp.Med., 204, 2007
|
|
6WQ2
| Cryo-EM of the S. islandicus filamentous virus, SIFV | Descriptor: | A-DNA, Structural protein MCP1, Structural protein MCP2 | Authors: | Wang, F, Baquero, D.P, Su, Z, Zheng, W, Prangishvili, D, Krupovic, M, Egelman, E.H. | Deposit date: | 2020-04-28 | Release date: | 2020-07-29 | Last modified: | 2024-05-29 | Method: | ELECTRON MICROSCOPY (4 Å) | Cite: | Structures of filamentous viruses infecting hyperthermophilic archaea explain DNA stabilization in extreme environments. Proc.Natl.Acad.Sci.USA, 117, 2020
|
|
6WQ0
| Cryo-EM of the S. solfataricus rod-shaped virus, SSRV1 | Descriptor: | DNA (301-MER), Structural protein | Authors: | Wang, F, Baquero, D.P, Beltran, L.C, Prangishvili, D, Krupovic, M, Egelman, E.H. | Deposit date: | 2020-04-28 | Release date: | 2020-07-29 | Last modified: | 2024-05-29 | Method: | ELECTRON MICROSCOPY (2.8 Å) | Cite: | Structures of filamentous viruses infecting hyperthermophilic archaea explain DNA stabilization in extreme environments. Proc.Natl.Acad.Sci.USA, 117, 2020
|
|