Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

7UXH

cryo-EM structure of the mTORC1-TFEB-Rag-Ragulator complex

This is a non-PDB format compatible entry.
Summary for 7UXH
Entry DOI10.2210/pdb7uxh/pdb
Related7UXC
EMDB information26852 26857 26861
DescriptorSerine/threonine-protein kinase mTOR, Ragulator complex protein LAMTOR5, Transcription factor EB, ... (15 entities in total)
Functional Keywordsmtorc1, tfeb, lysosome biogenesis, autophagy, signaling protein
Biological sourceHomo sapiens (human)
More
Total number of polymer chains36
Total formula weight1644644.58
Authors
Cui, Z.,Hurley, J. (deposition date: 2022-05-05, release date: 2022-11-30, Last modification date: 2024-06-12)
Primary citationCui, Z.,Napolitano, G.,de Araujo, M.E.G.,Esposito, A.,Monfregola, J.,Huber, L.A.,Ballabio, A.,Hurley, J.H.
Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex.
Nature, 614:572-579, 2023
Cited by
PubMed Abstract: The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1) is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino acid-mediated activation of the RagC GTPase activating protein FLCN. TFEB lacks the TOR signalling motif responsible for the recruitment of other mTORC1 substrates. We used cryogenic-electron microscopy to determine the structure of TFEB as presented to mTORC1 for phosphorylation, which we refer to as the 'megacomplex'. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first through a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB with a RagC-dependent aspartate clamp in the cleft between the Rag G domains. In cellulo mutation of the clamp drives TFEB constitutively into the nucleus while having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.
PubMed: 36697823
DOI: 10.1038/s41586-022-05652-7
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (3.2 Å)
Structure validation

230444

PDB entries from 2025-01-22

PDB statisticsPDBj update infoContact PDBjnumon