Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

6TL8

Structural basis of SALM3 dimerization and adhesion complex formation with the presynaptic receptor protein tyrosine phosphatases

Summary for 6TL8
Entry DOI10.2210/pdb6tl8/pdb
DescriptorMyeloid cell surface antigen CD33,Leucine-rich repeat and fibronectin type-III domain-containing protein 4, 2-acetamido-2-deoxy-beta-D-glucopyranose (3 entities in total)
Functional Keywordsleucine rich repeat, cell adhesion, synapse, salm3
Biological sourceHomo sapiens (Human)
More
Total number of polymer chains4
Total formula weight130952.17
Authors
Karki, S.,Shkumatov, A.V.,Bae, S.,Ko, J.,Kajander, T. (deposition date: 2019-12-02, release date: 2020-07-22, Last modification date: 2024-10-16)
Primary citationKarki, S.,Shkumatov, A.V.,Bae, S.,Kim, H.,Ko, J.,Kajander, T.
Structural basis of SALM3 dimerization and synaptic adhesion complex formation with PTP sigma.
Sci Rep, 10:11557-11557, 2020
Cited by
PubMed Abstract: Synaptic adhesion molecules play an important role in the formation, maintenance and refinement of neuronal connectivity. Recently, several leucine rich repeat (LRR) domain containing neuronal adhesion molecules have been characterized including netrin G-ligands, SLITRKs and the synaptic adhesion-like molecules (SALMs). Dysregulation of these adhesion molecules have been genetically and functionally linked to various neurological disorders. Here we investigated the molecular structure and mechanism of ligand interactions for the postsynaptic SALM3 adhesion protein with its presynaptic ligand, receptor protein tyrosine phosphatase σ (PTPσ). We solved the crystal structure of the dimerized LRR domain of SALM3, revealing the conserved structural features and mechanism of dimerization. Furthermore, we determined the complex structure of SALM3 with PTPσ using small angle X-ray scattering, revealing a 2:2 complex similar to that observed for SALM5. Solution studies unraveled additional flexibility for the complex structure, but validated the uniform mode of action for SALM3 and SALM5 to promote synapse formation. The relevance of the key interface residues was further confirmed by mutational analysis with cellular binding assays and artificial synapse formation assays. Collectively, our results suggest that SALM3 dimerization is a pre-requisite for the SALM3-PTPσ complex to exert synaptogenic activity.
PubMed: 32665594
DOI: 10.1038/s41598-020-68502-4
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.8 Å)
Structure validation

246704

PDB entries from 2025-12-24

PDB statisticsPDBj update infoContact PDBjnumon