6R75
Crystal structure of human Ube2T E54R mutant
Summary for 6R75
Entry DOI | 10.2210/pdb6r75/pdb |
Descriptor | Ubiquitin-conjugating enzyme E2 T (2 entities in total) |
Functional Keywords | dna repair, e2, ubiquitination, allostery, ligase |
Biological source | Homo sapiens (Human) |
Total number of polymer chains | 1 |
Total formula weight | 22880.25 |
Authors | Chaugule, V.K.,Rennie, M.L.,Walden, H.,Arkinson, C.,Kamarainen, O.,Toth, R. (deposition date: 2019-03-28, release date: 2019-10-16, Last modification date: 2024-01-24) |
Primary citation | Chaugule, V.K.,Arkinson, C.,Rennie, M.L.,Kamarainen, O.,Toth, R.,Walden, H. Allosteric mechanism for site-specific ubiquitination of FANCD2. Nat.Chem.Biol., 16:291-301, 2020 Cited by PubMed Abstract: DNA-damage repair is implemented by proteins that are coordinated by specialized molecular signals. One such signal in the Fanconi anemia (FA) pathway for the repair of DNA interstrand crosslinks is the site-specific monoubiquitination of FANCD2 and FANCI. The signal is mediated by a multiprotein FA core complex (FA-CC) however, the mechanics for precise ubiquitination remain elusive. We show that FANCL, the RING-bearing module in FA-CC, allosterically activates its cognate ubiqutin-conjugating enzyme E2 UBE2T to drive site-specific FANCD2 ubiquitination. Unlike typical RING E3 ligases, FANCL catalyzes ubiquitination by rewiring the intraresidue network of UBE2T to influence the active site. Consequently, a basic triad unique to UBE2T engages a structured acidic patch near the target lysine on FANCD2. This three-dimensional complementarity, between the E2 active site and substrate surface, induced by FANCL is central to site-specific monoubiquitination in the FA pathway. Furthermore, the allosteric network of UBE2T can be engineered to enhance FANCL-catalyzed FANCD2-FANCI di-monoubiquitination without compromising site specificity. PubMed: 31873223DOI: 10.1038/s41589-019-0426-z PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2 Å) |
Structure validation
Download full validation report