6I2I
Refined 13pf Hela Cell Tubulin microtubule (EML4-NTD decorated)
Summary for 6I2I
Entry DOI | 10.2210/pdb6i2i/pdb |
EMDB information | 0331 |
Descriptor | Tubulin alpha-1B chain, Tubulin beta chain, GUANOSINE-5'-TRIPHOSPHATE, ... (6 entities in total) |
Functional Keywords | microtubule, tubulin, hela, eml, structural protein |
Biological source | Homo sapiens (Human) More |
Total number of polymer chains | 2 |
Total formula weight | 101868.98 |
Authors | Atherton, J.M.,Moores, C.A. (deposition date: 2018-11-01, release date: 2019-08-28, Last modification date: 2024-05-15) |
Primary citation | Adib, R.,Montgomery, J.M.,Atherton, J.,O'Regan, L.,Richards, M.W.,Straatman, K.R.,Roth, D.,Straube, A.,Bayliss, R.,Moores, C.A.,Fry, A.M. Mitotic phosphorylation by NEK6 and NEK7 reduces the microtubule affinity of EML4 to promote chromosome congression. Sci.Signal., 12:-, 2019 Cited by PubMed Abstract: EML4 is a microtubule-associated protein that promotes microtubule stability. We investigated its regulation across the cell cycle and found that EML4 was distributed as punctate foci along the microtubule lattice in interphase but exhibited reduced association with spindle microtubules in mitosis. Microtubule sedimentation and cryo-electron microscopy with 3D reconstruction revealed that the basic N-terminal domain of EML4 mediated its binding to the acidic C-terminal tails of α- and β-tubulin on the microtubule surface. The mitotic kinases NEK6 and NEK7 phosphorylated the EML4 N-terminal domain at Ser and Ser in vitro, and depletion of these kinases in cells led to increased EML4 binding to microtubules in mitosis. An S144A-S146A double mutant not only bound inappropriately to mitotic microtubules but also increased their stability and interfered with chromosome congression. In addition, constitutive activation of NEK6 or NEK7 reduced the association of EML4 with interphase microtubules. Together, these data support a model in which NEK6- and NEK7-dependent phosphorylation promotes the dissociation of EML4 from microtubules in mitosis in a manner that is required for efficient chromosome congression. PubMed: 31409757DOI: 10.1126/scisignal.aaw2939 PDB entries with the same primary citation |
Experimental method | ELECTRON MICROSCOPY (3.6 Å) |
Structure validation
Download full validation report
