Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5TO0

HTRA2 S276C mutant

Summary for 5TO0
Entry DOI10.2210/pdb5to0/pdb
Related5m3n 5m3o 5tny 5tnz 5to1
DescriptorSerine protease HTRA2, mitochondrial, 2-(N-MORPHOLINO)-ETHANESULFONIC ACID (3 entities in total)
Functional Keywordsserine protease, parkinson disease, mitochondria, pdz dynamics, hydrolase
Biological sourceHomo sapiens (Human)
Cellular locationMitochondrion intermembrane space: O43464
Total number of polymer chains1
Total formula weight36189.19
Authors
Merski, M.,Barbosa Pereira, P.J.,Macedo-Ribeiro, S. (deposition date: 2016-10-15, release date: 2017-10-25, Last modification date: 2024-01-17)
Primary citationMerski, M.,Moreira, C.,Abreu, R.M.,Ramos, M.J.,Fernandes, P.A.,Martins, L.M.,Pereira, P.J.B.,Macedo-Ribeiro, S.
Molecular motion regulates the activity of the Mitochondrial Serine Protease HtrA2.
Cell Death Dis, 8:e3119-e3119, 2017
Cited by
PubMed Abstract: HtrA2 (high-temperature requirement 2) is a human mitochondrial protease that has a role in apoptosis and Parkinson's disease. The structure of HtrA2 with an intact catalytic triad was determined, revealing a conformational change in the active site loops, involving mainly the regulatory LD loop, which resulted in burial of the catalytic serine relative to the previously reported structure of the proteolytically inactive mutant. Mutations in the loops surrounding the active site that significantly restricted their mobility, reduced proteolytic activity both in vitro and in cells, suggesting that regulation of HtrA2 activity cannot be explained by a simple transition to an activated conformational state with enhanced active site accessibility. Manipulation of solvent viscosity highlighted an unusual bi-phasic behavior of the enzymatic activity, which together with MD calculations supports the importance of motion in the regulation of the activity of HtrA2. HtrA2 is an unusually thermostable enzyme (T=97.3 °C), a trait often associated with structural rigidity, not dynamic motion. We suggest that this thermostability functions to provide a stable scaffold for the observed loop motions, allowing them a relatively free conformational search within a rather restricted volume.
PubMed: 29022916
DOI: 10.1038/cddis.2017.487
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.9 Å)
Structure validation

229564

PDB entries from 2025-01-01

PDB statisticsPDBj update infoContact PDBjnumon