Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

4BOF

Crystal structure of arginine deiminase from group A streptococcus

Summary for 4BOF
Entry DOI10.2210/pdb4bof/pdb
DescriptorARGININE DEIMINASE, SULFATE ION, TRIETHYLENE GLYCOL, ... (5 entities in total)
Functional Keywordshydrolase, vaccine
Biological sourceSTREPTOCOCCUS PYOGENES
Total number of polymer chains8
Total formula weight372852.99
Authors
Henningham, A.,Ericsson, D.J.,Langer, K.,Casey, L.,Jovcevski, B.,Chhatwal, G.S.,Aquilina, J.A.,Batzloff, M.R.,Kobe, B.,Walker, M.J. (deposition date: 2013-05-20, release date: 2013-08-21, Last modification date: 2023-12-20)
Primary citationHenningham, A.,Ericsson, D.J.,Langer, K.,Casey, L.W.,Jovcevski, B.,Chhatwal, G.S.,Aquilina, J.A.,Batzloff, M.R.,Kobe, B.,Walker, M.J.
Structure-informed design of an enzymatically inactive vaccine component for group A Streptococcus.
MBio, 4:-, 2013
Cited by
PubMed Abstract: Streptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that converts arginine to citrulline and ammonia. Administration of a GAS vaccine preparation containing wild-type ADI, a protein with inherent enzymatic activity, may present a safety risk. In an approach intended to maximize the vaccine safety of GAS ADI, X-ray crystallography and structural immunogenic epitope mapping were used to inform vaccine design. This study aimed to knock out ADI enzyme activity without disrupting the three-dimensional structure or the recognition of immunogenic epitopes. We determined the crystal structure of ADI at 2.5 Å resolution and used it to select a number of amino acid residues for mutagenesis to alanine (D166, E220, H275, D277, and C401). Each mutant protein displayed abrogated activity, and three of the mutant proteins (those with the D166A, H275A, and D277A mutations) possessed a secondary structure and oligomerization state equivalent to those of the wild type, produced high-titer antisera, and avoided disruption of B-cell epitopes of ADI. In addition, antisera raised against the D166A and D277A mutant proteins bound to the GAS cell surface. The inactivated D166A and D277A mutant ADIs are ideal for inclusion in a GAS vaccine preparation. There is no human ortholog of ADI, and we confirm that despite limited structural similarity in the active-site region to human peptidyl ADI 4 (PAD4), ADI does not functionally mimic PAD4 and antiserum raised against GAS ADI does not recognize human PAD4.
PubMed: 23919999
DOI: 10.1128/mBio.00509-13
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.48 Å)
Structure validation

226707

PDB entries from 2024-10-30

PDB statisticsPDBj update infoContact PDBjnumon