2HZP
Crystal Structure of Homo Sapiens Kynureninase
Summary for 2HZP
Entry DOI | 10.2210/pdb2hzp/pdb |
Related | 1QZ9 |
Descriptor | Kynureninase, PYRIDOXAL-5'-PHOSPHATE (3 entities in total) |
Functional Keywords | kynureninase, kynurenine, hydrolase, hydroxykynurenine, plp, pyridoxal phosphate, quinolinic acid, hydroxyanthranilate, 3-hydroxyanthranilate, vitamin b6, nad, quinolinate |
Biological source | Homo sapiens (human) |
Cellular location | Cytoplasm: Q16719 |
Total number of polymer chains | 1 |
Total formula weight | 56823.06 |
Authors | Lima, S.,Khristoforov, R.,Momany, C.,Phillips, R.S. (deposition date: 2006-08-09, release date: 2006-11-07, Last modification date: 2023-08-30) |
Primary citation | Lima, S.,Khristoforov, R.,Momany, C.,Phillips, R.S. Crystal Structure of Homo sapiens Kynureninase. Biochemistry, 46:2735-2744, 2007 Cited by PubMed Abstract: Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates. PubMed: 17300176DOI: 10.1021/bi0616697 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2 Å) |
Structure validation
Download full validation report