Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

1X97

Crystal structure of Aldose Reductase complexed with 2R4S (Stereoisomer of Fidarestat, 2S4S)

Summary for 1X97
Entry DOI10.2210/pdb1x97/pdb
Related1PWM 1X96 1X98
DescriptorAldose Reductase, NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE, (2R,4S)-2-AMINOFORMYL-6-FLUORO-SPIRO[CHROMAN-4,4'-IMIDAZOLIDINE]-2',5'-DIONE, ... (4 entities in total)
Functional Keywordseight strandard alpha/beta barrel, active site, the c-terminal end of the barrel, oxidoreductase
Biological sourceHomo sapiens (human)
Cellular locationCytoplasm: P15121
Total number of polymer chains1
Total formula weight36920.97
Authors
El-Kabbani, O.,Darmanin, C.,Oka, M.,Schulze-Briese, C.,Tomizaki, T.,Hazemann, I.,Mitschler, A.,Podjarny, A. (deposition date: 2004-08-19, release date: 2004-09-07, Last modification date: 2023-10-25)
Primary citationEl-Kabbani, O.,Darmanin, C.,Oka, M.,Schulze-Briese, C.,Tomizaki, T.,Hazemann, I.,Mitschler, A.,Podjarny, A.
High-Resolution Structures of Human Aldose Reductase Holoenzyme in Complex with Stereoisomers of the Potent Inhibitor Fidarestat: Stereospecific Interaction between the Enzyme and a Cyclic Imide Type Inhibitor
J.Med.Chem., 47:4530-4537, 2004
Cited by
PubMed Abstract: Structure determinations of human aldose reductase holoenzyme in complex with the 2S4R-,2R4S- and 2R4R-isomers of the potent inhibitor Fidarestat ((2S,4S)-6-fluoro-2',5'-dioxospiro[chroman-4,4'-imidazoline]-2-carboxamide) were carried out in order to elucidate the binding modes responsible for the differences in their inhibitory potencies. In the complex structure with the 2R4S-isomer the cyclic imide moiety formed hydrogen bonds with the side-chains of Trp111, Tyr48 and His110. In the attempt to determine the complex structure with the least potent 2R4R-isomer this ligand was not observed, and instead, the active site was simultaneously occupied by two citrate molecules (occupancies of 60% and 40%). In the case of 2S4R, the active site was occupied by a citrate molecule which anchors the 2S4R-isomer from its carbamoyl group. The structures of the complexes suggest that the differences in the interactions between the cyclic imide rings and carbamoyl groups of the compounds with residues His110, Trp111, Trp219 and Cys298 account for differences in their inhibitory potencies.
PubMed: 15317464
DOI: 10.1021/jm0497794
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.4 Å)
Structure validation

226707

PDB entries from 2024-10-30

PDB statisticsPDBj update infoContact PDBjnumon