9G2J
Thaumatin structure determined using SoS chip at ID29 (serial crystallography)
Summary for 9G2J
| Entry DOI | 10.2210/pdb9g2j/pdb |
| Descriptor | Thaumatin I, L(+)-TARTARIC ACID (3 entities in total) |
| Functional Keywords | thaumatin, plant protein |
| Biological source | Thaumatococcus daniellii |
| Total number of polymer chains | 1 |
| Total formula weight | 22393.21 |
| Authors | Doak, R.B.,Shoeman, R.L.,Gorel, A.,Barends, T.R.M.,Schlichting, I. (deposition date: 2024-07-11, release date: 2024-12-18) |
| Primary citation | Doak, R.B.,Shoeman, R.L.,Gorel, A.,Nizinski, S.,Barends, T.R.M.,Schlichting, I. Sheet-on-sheet fixed target data collection devices for serial crystallography at synchrotron and XFEL sources. J.Appl.Crystallogr., 57:1725-1732, 2024 Cited by PubMed Abstract: Serial crystallography (SX) efficiently distributes over many crystals the radiation dose absorbed during diffraction data acquisition, enabling structure determination of samples at ambient temperature. SX relies on the rapid and reliable replacement of X-ray-exposed crystals with fresh crystals at a rate commensurate with the data acquisition rate. 'Solid supports', also known as 'fixed targets' or 'chips', offer one approach. These are microscopically thin solid panes into or onto which crystals are deposited to be individually interrogated by an X-ray beam. Solid supports are generally patterned using photolithography methods to produce a regular array of features that trap single crystals. A simpler and less expensive alternative is to merely sandwich the microcrystals between two unpatterned X-ray-transparent polymer sheets. Known as sheet-on-sheet (SOS) chips, these offer significantly more versatility. SOS chips place no constraint on the size or size distribution of the microcrystals or their growth conditions. Crystals ranging from true nanocrystals up to microcrystals can be investigated, as can crystals grown in media ranging from low viscosity (aqueous solution) up to high viscosity (such as lipidic cubic phase). Here, we describe our two SOS devices. The first is a compact and lightweight version designed specifically for synchrotron use. It incorporates a standard SPINE-type magnetic base for mounting on a conventional macromolecular crystallography goniometer. The second and larger chip is intended for both X-ray free-electron laser and synchrotron use and is fully compatible with the fast-scanning -raster stages developed for data collection with patterned chips. PubMed: 39628875DOI: 10.1107/S1600576724008914 PDB entries with the same primary citation |
| Experimental method | X-RAY DIFFRACTION (1.69 Å) |
Structure validation
Download full validation report






