Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

8ZVO

AtKAI2 apo structure

Summary for 8ZVO
Entry DOI10.2210/pdb8zvo/pdb
Related8ZVN
DescriptorProbable esterase KAI2, GLYCEROL, SULFATE ION, ... (4 entities in total)
Functional Keywordskarrikin insensitive 2, signaling protein
Biological sourceArabidopsis thaliana (thale cress)
Total number of polymer chains1
Total formula weight31351.48
Authors
Takegamie, K.,Takeuchi, J.,Nakamura, A. (deposition date: 2024-06-11, release date: 2025-02-19, Last modification date: 2025-03-05)
Primary citationKushihara, R.,Nakamura, A.,Takegami, K.,Seto, Y.,Kato, Y.,Dohra, H.,Ohnishi, T.,Todoroki, Y.,Takeuchi, J.
Structural requirements of KAI2 ligands for activation of signal transduction.
Proc.Natl.Acad.Sci.USA, 122:e2414779122-e2414779122, 2025
Cited by
PubMed Abstract: Karrikin Insensitive 2 (KAI2), identified as the receptor protein for karrikins (KARs), which are smoke-derived seed germination stimulants, belongs to the same α/β-hydrolase family as D14, the receptor for strigolactones (SLs). KAI2 is believed to recognize an endogenous butenolide (KAI2 ligand; KL), but the identity of this compound remains unknown. Recent studies have suggested that ligand hydrolysis by KAI2 is a prerequisite for receptor activation to induce interaction with the target proteins, similar to the situation with D14. However, direct experimental evidence has been lacking. Here, we designed KAI2 ligands (carba-dMGers) whose butenolide rings were modified so that they cannot be hydrolyzed or dissociated from the original ligand molecule by KAI2, by structurally modifying dMGer, a potent and selective KAI2 agonist. Using these dMGer analogs, we found that the strongly bioactive ligand, (+)-dMGer, was hydrolyzed by KAI2 at a lower enzymatic rate compared with the weakly bioactive ligand, (+)-1'-carba-dMGer, and the hydrolyzed butenolide ring of (+)-dMGer was transiently trapped in the catalytic pocket of KAI2. Additionally, structural analysis revealed that (+)-6'-carba-dMGer bound to the catalytic pocket of KAI2 in the unhydrolyzed state. However, this binding did not induce the interaction between KAI2 and SMAX1, indicating that ligand binding to the receptor alone was not sufficient for KAI2 signaling. This study showed experimental data from a ligand structure-activity study that ligand hydrolysis and subsequent covalent adduct formation with the catalytic triad plays a key role in KAI2 activation, providing insight into the chemical structure of the KL.
PubMed: 39977316
DOI: 10.1073/pnas.2414779122
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.49 Å)
Structure validation

236620

PDB entries from 2025-05-28

PDB statisticsPDBj update infoContact PDBjnumon