Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

8STW

K384N HUMAN CYSTATHIONINE BETA-SYNTHASE (delta 411-551)

Summary for 8STW
Entry DOI10.2210/pdb8stw/pdb
DescriptorCystathionine beta-synthase, K384N variant, PYRIDOXAL-5'-PHOSPHATE, PROTOPORPHYRIN IX CONTAINING FE, ... (4 entities in total)
Functional Keywordsplp, heme, hydrogen sulfide, lyase
Biological sourceHomo sapiens (human)
Total number of polymer chains6
Total formula weight244627.66
Authors
Mascarenhas, R.,Roman, J.,Banerjee, R. (deposition date: 2023-05-11, release date: 2023-11-22, Last modification date: 2023-12-20)
Primary citationRoman, J.V.,Mascarenhas, R.,Ceric, K.,Ballou, D.P.,Banerjee, R.
Disease-causing cystathionine beta-synthase linker mutations impair allosteric regulation.
J.Biol.Chem., 299:105449-105449, 2023
Cited by
PubMed Abstract: Cystathionine β-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates HS, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.
PubMed: 37949228
DOI: 10.1016/j.jbc.2023.105449
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.4 Å)
Structure validation

226707

數據於2024-10-30公開中

PDB statisticsPDBj update infoContact PDBjnumon