Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

8QZ3

Crystal structure of human two pore domain potassium ion channel TREK-2 (K2P10.1) in complex with an activatory nanobody (Nb67)

Summary for 8QZ3
Entry DOI10.2210/pdb8qz3/pdb
DescriptorPotassium channel subfamily K member 10, Nanobody 67, POTASSIUM ION, ... (5 entities in total)
Functional Keywordspotassium ion channel, nanobody, membrane protein, structural genomics, structural genomics consortium, sgc
Biological sourceHomo sapiens (human)
More
Total number of polymer chains5
Total formula weight105460.83
Authors
Primary citationRodstrom, K.E.J.,Cloake, A.,Sormann, J.,Baronina, A.,Smith, K.H.M.,Pike, A.C.W.,Ang, J.,Proks, P.,Schewe, M.,Holland-Kaye, I.,Bushell, S.R.,Elliott, J.,Pardon, E.,Baukrowitz, T.,Owens, R.J.,Newstead, S.,Steyaert, J.,Carpenter, E.P.,Tucker, S.J.
Extracellular modulation of TREK-2 activity with nanobodies provides insight into the mechanisms of K2P channel regulation.
Nat Commun, 15:4173-4173, 2024
Cited by
PubMed Abstract: Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.
PubMed: 38755204
DOI: 10.1038/s41467-024-48536-2
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.4 Å)
Structure validation

227111

건을2024-11-06부터공개중

PDB statisticsPDBj update infoContact PDBjnumon