Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

7QZ1

Formate dehydrogenase from Starkeya novella

Summary for 7QZ1
Entry DOI10.2210/pdb7qz1/pdb
DescriptorFormate dehydrogenase, DI(HYDROXYETHYL)ETHER, GLYCEROL, ... (6 entities in total)
Functional Keywordsapo protein, formate dehydrogenase, cytosolic protein
Biological sourceStarkeya novella DSM 506
Total number of polymer chains4
Total formula weight187760.79
Authors
Pontillo, N.,Slotboom, D.J.,Guskov, A. (deposition date: 2022-01-30, release date: 2023-02-08, Last modification date: 2024-02-07)
Primary citationPartipilo, M.,Whittaker, J.J.,Pontillo, N.,Coenradij, J.,Herrmann, A.,Guskov, A.,Slotboom, D.J.
Biochemical and structural insight into the chemical resistance and cofactor specificity of the formate dehydrogenase from Starkeya novella.
Febs J., 290:4238-4255, 2023
Cited by
PubMed Abstract: Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (Fdh ) from the soil bacterium Starkeya novella strictly specific for NAD . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of Fdh as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP ) with better catalytic efficiency than NAD . The single mutation D221Q enabled the reduction of NADP with a catalytic efficiency k /K of 0.4 s ·mm at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of Fdh may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.
PubMed: 37213112
DOI: 10.1111/febs.16871
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.1 Å)
Structure validation

248335

PDB entries from 2026-01-28

PDB statisticsPDBj update infoContact PDBjnumon