7QNX
The receptor binding domain of SARS-CoV-2 spike glycoprotein in complex with Beta-55 and EY6A Fabs
Summary for 7QNX
Entry DOI | 10.2210/pdb7qnx/pdb |
Related | 7QNW |
Descriptor | EY6A heavy chain, EY6A light chain, Beta-55 heavy chain, ... (6 entities in total) |
Functional Keywords | sars-cov-2, beta variant, omicron variant, b.1.351, b.1.1.529, antibody, rbd, spike, neutralisation, viral protein/immune system, viral protein |
Biological source | Homo sapiens (Human) More |
Total number of polymer chains | 5 |
Total formula weight | 119337.25 |
Authors | Zhou, D.,Ren, J.,Stuart, D.I. (deposition date: 2021-12-23, release date: 2022-01-19, Last modification date: 2024-01-31) |
Primary citation | Dejnirattisai, W.,Huo, J.,Zhou, D.,Zahradnik, J.,Supasa, P.,Liu, C.,Duyvesteyn, H.M.E.,Ginn, H.M.,Mentzer, A.J.,Tuekprakhon, A.,Nutalai, R.,Wang, B.,Dijokaite, A.,Khan, S.,Avinoam, O.,Bahar, M.,Skelly, D.,Adele, S.,Johnson, S.A.,Amini, A.,Ritter, T.G.,Mason, C.,Dold, C.,Pan, D.,Assadi, S.,Bellass, A.,Omo-Dare, N.,Koeckerling, D.,Flaxman, A.,Jenkin, D.,Aley, P.K.,Voysey, M.,Costa Clemens, S.A.,Naveca, F.G.,Nascimento, V.,Nascimento, F.,Fernandes da Costa, C.,Resende, P.C.,Pauvolid-Correa, A.,Siqueira, M.M.,Baillie, V.,Serafin, N.,Kwatra, G.,Da Silva, K.,Madhi, S.A.,Nunes, M.C.,Malik, T.,Openshaw, P.J.M.,Baillie, J.K.,Semple, M.G.,Townsend, A.R.,Huang, K.A.,Tan, T.K.,Carroll, M.W.,Klenerman, P.,Barnes, E.,Dunachie, S.J.,Constantinides, B.,Webster, H.,Crook, D.,Pollard, A.J.,Lambe, T.,Paterson, N.G.,Williams, M.A.,Hall, D.R.,Fry, E.E.,Mongkolsapaya, J.,Ren, J.,Schreiber, G.,Stuart, D.I.,Screaton, G.R. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 185:467-484.e15, 2022 Cited by PubMed Abstract: On 24 November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses. PubMed: 35081335DOI: 10.1016/j.cell.2021.12.046 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.92 Å) |
Structure validation
Download full validation report