7P99
Structure of human USPL1 in complex with SUMO2
Summary for 7P99
Entry DOI | 10.2210/pdb7p99/pdb |
Descriptor | SUMO-specific isopeptidase USPL1, Small ubiquitin-related modifier, ZINC ION, ... (4 entities in total) |
Functional Keywords | uspl1, sumo2, hydrolase |
Biological source | Homo sapiens (Human) More |
Total number of polymer chains | 2 |
Total formula weight | 50246.50 |
Authors | Reverter, D.,Ying, L. (deposition date: 2021-07-26, release date: 2022-03-02, Last modification date: 2024-10-16) |
Primary citation | Li, Y.,Varejao, N.,Reverter, D. Structural basis for the SUMO protease activity of the atypical ubiquitin-specific protease USPL1. Nat Commun, 13:1819-1819, 2022 Cited by PubMed Abstract: Post-translational protein modifications by ubiquitin and ubiquitin-like modifiers regulate many major pathways in the cell. These modifications can be reversed by de-ubiquitinating enzymes such as ubiquitin-specific proteases (USPs). Proteolytic activity towards ubiquitin-modified substrates is common to all USP family members except for USPL1, which shows a unique preference for the ubiquitin-like modifier SUMO. Here, we present the crystal structure of USPL1 bound to SUMO2, defining the key structural elements for the unusual deSUMOylase activity of USPL1. We identify specific contacts between SUMO2 and the USPL1 subdomains, including a unique hydrogen bond network of the SUMO2 C-terminal tail. In addition, we find that USPL1 lacks major structural elements present in all canonical USPs members such as the so-called blocking loops, which facilitates SUMO binding. Our data give insight into how a structural protein scaffold designed to bind ubiquitin has evolved to bind SUMO, providing an example of divergent evolution in the USP family. PubMed: 35383180DOI: 10.1038/s41467-022-29485-0 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.8 Å) |
Structure validation
Download full validation report