Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

6QGH

Structure of human Bcl-2 in complex with ABT-263

Summary for 6QGH
Entry DOI10.2210/pdb6qgh/pdb
Related6QG8 6QGG
DescriptorApoptosis regulator Bcl-2,Bcl-2-like protein 1,Apoptosis regulator Bcl-2,Bcl-2-like protein 1, 4-(4-{[2-(4-chlorophenyl)-5,5-dimethylcyclohex-1-en-1-yl]methyl}piperazin-1-yl)-N-[(4-{[(2R)-4-(morpholin-4-yl)-1-(phenylsulfanyl)butan-2-yl]amino}-3-[(trifluoromethyl)sulfonyl]phenyl)sulfonyl]benzamide (3 entities in total)
Functional Keywordsapoptosis, bcl2, abt-263, drug design
Biological sourceHomo sapiens (Human)
More
Total number of polymer chains1
Total formula weight21417.07
Authors
Primary citationMurray, J.B.,Davidson, J.,Chen, I.,Davis, B.,Dokurno, P.,Graham, C.J.,Harris, R.,Jordan, A.,Matassova, N.,Pedder, C.,Ray, S.,Roughley, S.D.,Smith, J.,Walmsley, C.,Wang, Y.,Whitehead, N.,Williamson, D.S.,Casara, P.,Le Diguarher, T.,Hickman, J.,Stark, J.,Kotschy, A.,Geneste, O.,Hubbard, R.E.
Establishing Drug Discovery and Identification of Hit Series for the Anti-apoptotic Proteins, Bcl-2 and Mcl-1.
Acs Omega, 4:8892-8906, 2019
Cited by
PubMed Abstract: We describe our work to establish structure- and fragment-based drug discovery to identify small molecules that inhibit the anti-apoptotic activity of the proteins Mcl-1 and Bcl-2. This identified hit series of compounds, some of which were subsequently optimized to clinical candidates in trials for treating various cancers. Many protein constructs were designed to identify protein with suitable properties for different biophysical assays and structural methods. Fragment screening using ligand-observed NMR experiments identified several series of compounds for each protein. The series were assessed for their potential for subsequent optimization using H and N heteronuclear single-quantum correlation NMR, surface plasmon resonance, and isothermal titration calorimetry measurements to characterize and validate binding. Crystal structures could not be determined for the early hits, so NMR methods were developed to provide models of compound binding to guide compound optimization. For Mcl-1, a benzodioxane/benzoxazine series was optimized to a of 40 μM before a thienopyrimidine hit series was identified which subsequently led to the lead series from which the clinical candidate S 64315 (MIK 665) was identified. For Bcl-2, the fragment-derived series were difficult to progress, and a compound derived from a published tetrahydroquinone compound was taken forward as the hit from which the clinical candidate (S 55746) was obtained. For both the proteins, the work to establish a portfolio of assays gave confidence for identification of compounds suitable for optimization.
PubMed: 31459977
DOI: 10.1021/acsomega.9b00611
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2 Å)
Structure validation

230444

PDB entries from 2025-01-22

PDB statisticsPDBj update infoContact PDBjnumon