Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

6Q3U

Gly52Ala mutant of arginine-bound ArgBP from T. maritima

Summary for 6Q3U
Entry DOI10.2210/pdb6q3u/pdb
DescriptorAmino acid ABC transporter, periplasmic amino acid-binding protein, ARGININE, SULFATE ION, ... (4 entities in total)
Functional Keywordsgly52ala mutation, protein stability, local strains, helix insertion motif, transport protein
Biological sourceThermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)
Total number of polymer chains1
Total formula weight23858.31
Authors
Balasco, N.,Smaldone, G.,Ruggiero, A.,Vitagliano, L. (deposition date: 2018-12-04, release date: 2019-05-08, Last modification date: 2024-01-24)
Primary citationBalasco, N.,Smaldone, G.,Vigorita, M.,Del Vecchio, P.,Graziano, G.,Ruggiero, A.,Vitagliano, L.
The characterization of Thermotoga maritima Arginine Binding Protein variants demonstrates that minimal local strains have an important impact on protein stability.
Sci Rep, 9:6617-6617, 2019
Cited by
PubMed Abstract: The Ramachandran plot is a versatile and valuable tool that provides fundamental information for protein structure determination, prediction, and validation. The structural/thermodynamic effects produced by forcing a residue to adopt a conformation predicted to be forbidden were here explored using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model. Specifically, we mutated TmArgBP Gly52 that assumes a conformation believed to be strictly disallowed for non-Gly residues. Surprisingly, the crystallographic characterization of Gly52Ala TmArgBP indicates that the structural context forces the residue to adopt a non-canonical conformation never observed in any of the high-medium resolution PDB structures. Interestingly, the inspection of this high resolution structure demonstrates that only minor alterations occur. Nevertheless, experiments indicate that Gly52 replacements in TmArgBP produce destabilizations comparable to those observed upon protein truncation or dissection in domains. Notably, we show that force-fields commonly used in computational biology do not reproduce this non-canonical state. Using TmArgBP as model system we here demonstrate that the structural context may force residues to adopt conformations believed to be strictly forbidden and that barely detectable alterations produce major destabilizations. Present findings highlight the role of subtle strains in governing protein stability. A full understanding of these phenomena is essential for an exhaustive comprehension of the factors regulating protein structures.
PubMed: 31036855
DOI: 10.1038/s41598-019-43157-y
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.64 Å)
Structure validation

247947

PDB entries from 2026-01-21

PDB statisticsPDBj update infoContact PDBjnumon