6OX7
The complex of 1918 NS1-ED and the iSH2 domain of the human p85beta subunit of PI3K
Summary for 6OX7
Entry DOI | 10.2210/pdb6ox7/pdb |
Descriptor | Non-structural protein 1, Phosphatidylinositol 3-kinase regulatory subunit beta (3 entities in total) |
Functional Keywords | ns1, p85-beta, pi3k, 1918, viral protein |
Biological source | Influenza A virus (strain A/Brevig Mission/1/1918 H1N1) More |
Total number of polymer chains | 4 |
Total formula weight | 72634.86 |
Authors | |
Primary citation | Cho, J.H.,Zhao, B.,Shi, J.,Savage, N.,Shen, Q.,Byrnes, J.,Yang, L.,Hwang, W.,Li, P. Molecular recognition of a host protein by NS1 of pandemic and seasonal influenza A viruses. Proc.Natl.Acad.Sci.USA, 117:6550-6558, 2020 Cited by PubMed Abstract: The 1918 influenza A virus (IAV) caused the most severe flu pandemic in recorded human history. Nonstructural protein 1 (NS1) is an important virulence factor of the 1918 IAV. NS1 antagonizes host defense mechanisms through interactions with multiple host factors. One pathway by which NS1 increases virulence is through the activation of phosphoinositide 3-kinase (PI3K) by binding to its p85β subunit. Here we present the mechanism underlying the molecular recognition of the p85β subunit by 1918 NS1. Using X-ray crystallography, we determine the structure of 1918 NS1 complexed with p85β of human PI3K. We find that the 1918 NS1 effector domain (1918 NS1) undergoes a conformational change to bind p85β. Using NMR relaxation dispersion and molecular dynamics simulation, we identify that free 1918 NS1 exists in a dynamic equilibrium between p85β-binding-competent and -incompetent conformations in the submillisecond timescale. Moreover, we discover that NS1 proteins of 1918 (H1N1) and Udorn (H3N2) strains exhibit drastically different conformational dynamics and binding kinetics to p85β. These results provide evidence of strain-dependent conformational dynamics of NS1. Using kinetic modeling based on the experimental data, we demonstrate that 1918 NS1 can result in the faster hijacking of p85β compared to Ud NS1, although the former has a lower affinity to p85β than the latter. Our results suggest that the difference in binding kinetics may impact the competition with cellular antiviral responses for the activation of PI3K. We anticipate that our findings will increase the understanding of the strain-dependent behaviors of influenza NS1 proteins. PubMed: 32152123DOI: 10.1073/pnas.1920582117 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.75 Å) |
Structure validation
Download full validation report
