6KY4
Crystal structure of Sulfiredoxin from Arabidopsis thaliana
Summary for 6KY4
Entry DOI | 10.2210/pdb6ky4/pdb |
Descriptor | Sulfiredoxin, chloroplastic/mitochondrial, ADENOSINE-5'-DIPHOSPHATE, PHOSPHATE ION, ... (4 entities in total) |
Functional Keywords | sulfiredoxin, cysteine, sulfinic acid, peroxiredoxin repair protein, arabidopsis thaliana, antioxidant, oxidoreductase |
Biological source | Arabidopsis thaliana (Mouse-ear cress) |
Total number of polymer chains | 1 |
Total formula weight | 13386.96 |
Authors | |
Primary citation | Liu, M.,Wang, J.,Li, X.,Sylvanno, M.J.,Li, M.,Zhang, M.,Wang, M. The crystal structure of sulfiredoxin from Arabidopsis thaliana revealed a more robust antioxidant mechanism in plants. Biochem.Biophys.Res.Commun., 520:347-352, 2019 Cited by PubMed Abstract: Typical 2-cysteine peroxiredoxins (2-Cys Prxs) are critical peroxidase sensors and could be deactivated by the hyperoxidation under oxidative stress. In plants, 2-Cys Prxs present at a high level in chloroplasts and are repaired by Sulfiredoxin. Whereas many studies have explored the mechanism of Sulfiredoxin from Homo sapiens (HsSrx), the molecular mechanism of Sulfiredoxin in plants with unique photosynthesis remains unclear. Here we report the crystal structure of Sulfiredoxin from Arabidopsis thaliana (AtSrx), which displayed a typical ParB/Srx fold with an ATP bound at a conservative nucleotide binding motif GCHR. Both the ADP binding pocket and the putative AtSrx-AtPrxA interaction surface of AtSrx are more positively charged comparing to HsSrx, suggesting a robust mechanism of AtSrx. These features illustrate the unique mechanisms of AtSrx, which are vital for figure out the strategies of plants to cope with oxidation stress. PubMed: 31604522DOI: 10.1016/j.bbrc.2019.10.034 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (3.2 Å) |
Structure validation
Download full validation report
