Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

6FL5

Structure of human SHMT1-H135N-R137A-E168N mutant at 3.6 Ang. resolution

Summary for 6FL5
Entry DOI10.2210/pdb6fl5/pdb
DescriptorSerine hydroxymethyltransferase, cytosolic, PYRIDOXAL-5'-PHOSPHATE, CHLORIDE ION (3 entities in total)
Functional Keywordstransferase, serine hydroxymethyltransferase, interface, tetramer, ocm, serine, thf, glicine, tca
Biological sourceHomo sapiens (Human)
Total number of polymer chains4
Total formula weight207913.57
Authors
Giardina, G.,Cutruzzola, F.,Lucchi, R. (deposition date: 2018-01-25, release date: 2018-10-10, Last modification date: 2024-01-17)
Primary citationGiardina, G.,Paone, A.,Tramonti, A.,Lucchi, R.,Marani, M.,Magnifico, M.C.,Bouzidi, A.,Pontecorvi, V.,Guiducci, G.,Zamparelli, C.,Rinaldo, S.,Paiardini, A.,Contestabile, R.,Cutruzzola, F.
The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells.
FEBS J., 285:3238-3253, 2018
Cited by
PubMed Abstract: Cancer cells reprogramme one-carbon metabolism (OCM) to sustain growth and proliferation. Depending on cell demands, serine hydroxymethyltransferase (SHMT) dynamically changes the fluxes of OCM by reversibly converting serine and tetrahydrofolate (THF) into 5,10-methylene-THF and glycine. SHMT is a tetrameric enzyme that mainly exists in three isoforms; two localize in the cytosol (SHMT1/SHMT2α) and one (SHMT2) in the mitochondria. Both the cytosolic isoforms can also translocate to the nucleus to sustain de novo thymidylate synthesis and support cell proliferation. Finally, the expression levels of the different isoforms are regulated to a certain extent by a yet unknown crosstalk mechanism. We have designed and fully characterized a set of three SHMT1 mutants, which uncouple the oligomeric state of the enzyme from its catalytic activity. We have then investigated the effects of the mutations on SHMT1 nuclear localization, cell viability and crosstalk in lung cancer cells (A549; H1299). Our data reveal that in these cell lines de novo thymidylate synthesis requires SHMT1 to be active, regardless of its oligomeric state. We have also confirmed that the crosstalk between the cytosolic and mitochondrial SHMT actually takes place and regulates the expression of the two isoforms. Apparently, the crosstalk mechanism is independent from the oligomeric state and the catalytic activity of SHMT1.
PubMed: 30035852
DOI: 10.1111/febs.14610
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.6 Å)
Structure validation

246333

数据于2025-12-17公开中

PDB statisticsPDBj update infoContact PDBjnumon