Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5MRO

Arabidopsis thaliana IspD Glu258Ala mutant in complex with Azolopyrimidine (1)

Summary for 5MRO
Entry DOI10.2210/pdb5mro/pdb
Related1W77 2YC5 4NAK
Descriptor2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, chloroplastic, Azolopyrimidine, 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL, ... (7 entities in total)
Functional Keywordsherbicide, anti-infectives, drug discovery, allosteric inhibition, mutant, transferase
Biological sourceArabidopsis thaliana (Mouse-ear cress)
Cellular locationPlastid, chloroplast stroma : P69834
Total number of polymer chains1
Total formula weight26190.36
Authors
Schwab, A.,Illarionov, B.,Frank, A.,Kunfermann, A.,Seet, M.,Bacher, A.,Witschel, M.,Fischer, M.,Groll, M.,Diederich, F. (deposition date: 2016-12-23, release date: 2017-07-19, Last modification date: 2024-01-17)
Primary citationSchwab, A.,Illarionov, B.,Frank, A.,Kunfermann, A.,Seet, M.,Bacher, A.,Witschel, M.C.,Fischer, M.,Groll, M.,Diederich, F.
Mechanism of Allosteric Inhibition of the Enzyme IspD by Three Different Classes of Ligands.
ACS Chem. Biol., 12:2132-2138, 2017
Cited by
PubMed Abstract: Enzymes of the nonmevalonate pathway of isoprenoid biosynthesis are attractive targets for the development of herbicides and drugs against infectious diseases. While this pathway is essential for many pathogens and plants, mammals do not depend on it for the synthesis of isoprenoids. IspD, the third enzyme of the nonmevalonate pathway, is unique in that it has an allosteric regulatory site. We elucidated the binding mode of phenylisoxazoles, a new class of allosteric inhibitors. Allosteric inhibition is effected by large conformational changes of a loop region proximal to the active site. We investigated the different roles of residues in this loop by mutation studies and identified repulsive interactions with Asp291 and Asp292 to be responsible for inhibition. Crystallographic data and the response of mutant enzymes to three different classes of allosteric inhibitors provide an in-depth understanding of the allosteric mechanism. The obtained mutant enzymes show selective resistance to allosteric inhibitors and provide conceptually valuable information for future engineering of herbicide-resistant crops. We found that the isoprenoid precursors IPP and DMAPP are natural inhibitors of Arabidopsis thaliana IspD; however, they do not seem to bind to the allosteric site.
PubMed: 28686408
DOI: 10.1021/acschembio.7b00004
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.8 Å)
Structure validation

239149

PDB entries from 2025-07-23

PDB statisticsPDBj update infoContact PDBjnumon