5LHB
POLYADPRIBOSYL GLYCOSIDASE IN COMPLEX WITH PDD00017262
Summary for 5LHB
| Entry DOI | 10.2210/pdb5lhb/pdb |
| Descriptor | Poly(ADP-ribose) glycohydrolase, 1-(cyclopropylmethyl)-6-[[(1-methylcyclopropyl)amino]-bis(oxidanyl)-$l^{4}-sulfanyl]-3-[(2-methyl-1,3-thiazol-5-yl)methyl]quinazoline-2,4-dione, SULFATE ION, ... (5 entities in total) |
| Functional Keywords | hydrolase, competitive inhibitor |
| Biological source | Homo sapiens (Human) |
| Total number of polymer chains | 1 |
| Total formula weight | 62079.65 |
| Authors | Tucker, J.,Barkauskaite, E. (deposition date: 2016-07-10, release date: 2016-10-12, Last modification date: 2025-08-06) |
| Primary citation | James, D.I.,Smith, K.M.,Jordan, A.M.,Fairweather, E.E.,Griffiths, L.A.,Hamilton, N.S.,Hitchin, J.R.,Hutton, C.P.,Jones, S.,Kelly, P.,McGonagle, A.E.,Small, H.,Stowell, A.I.,Tucker, J.,Waddell, I.D.,Waszkowycz, B.,Ogilvie, D.J. First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chem. Biol., 11:3179-3190, 2016 Cited by PubMed Abstract: The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR). PubMed: 27689388DOI: 10.1021/acschembio.6b00609 PDB entries with the same primary citation |
| Experimental method | X-RAY DIFFRACTION (2.23 Å) |
Structure validation
Download full validation report






