5IGW
Macrolide 2'-phosphotransferase type II - complex with GDP and clarithromycin
Summary for 5IGW
Entry DOI | 10.2210/pdb5igw/pdb |
Related | 5IGU 5IGV 5IGY 5IGZ 5IH0 5IH1 |
Descriptor | Macrolide 2'-phosphotransferase II, GUANOSINE-5'-DIPHOSPHATE, MAGNESIUM ION, ... (5 entities in total) |
Functional Keywords | macrolide phosphotransferase, kinase, transferase |
Biological source | Escherichia coli |
Total number of polymer chains | 1 |
Total formula weight | 35766.98 |
Authors | Berghuis, A.M.,Fong, D.H. (deposition date: 2016-02-28, release date: 2017-04-26, Last modification date: 2023-09-27) |
Primary citation | Fong, D.H.,Burk, D.L.,Blanchet, J.,Yan, A.Y.,Berghuis, A.M. Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance. Structure, 25:750-761.e5, 2017 Cited by PubMed Abstract: The macrolides are a class of antibiotic, characterized by a large macrocyclic lactone ring that can be inactivated by macrolide phosphotransferase enzymes. We present structures for MPH(2')-I and MPH(2')-II in the apo state, and in complex with GTP analogs and six different macrolides. These represent the first structures from the two main classes of macrolide phosphotransferases. The structures show that the enzymes are related to the aminoglycoside phosphotransferases, but are distinguished from them by the presence of a large interdomain linker that contributes to an expanded antibiotic binding pocket. This pocket is largely hydrophobic, with a negatively charged patch located at a conserved aspartate residue, rationalizing the broad-spectrum resistance conferred by the enzymes. Complementary mutation studies provide insights into factors governing substrate specificity. A comparison with macrolides bound to their natural target, the 50S ribosome, suggests avenues for next-generation antibiotic development. PubMed: 28416110DOI: 10.1016/j.str.2017.03.007 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.096 Å) |
Structure validation
Download full validation report