Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5ENL

INHIBITION OF ENOLASE: THE CRYSTAL STRUCTURES OF ENOLASE-CA2+-PHOSPHOGLYCERATE AND ENOLASE-ZN2+-PHOSPHOGLYCOLATE COMPLEXES AT 2.2-ANGSTROMS RESOLUTION

Summary for 5ENL
Entry DOI10.2210/pdb5enl/pdb
DescriptorENOLASE, CALCIUM ION, 2-PHOSPHOGLYCERIC ACID, ... (4 entities in total)
Functional Keywordscarbon-oxygen lyase
Biological sourceSaccharomyces cerevisiae (baker's yeast)
Cellular locationCytoplasm : P00924
Total number of polymer chains1
Total formula weight46916.83
Authors
Lebioda, L.,Stec, B. (deposition date: 1990-11-13, release date: 1992-04-15, Last modification date: 2024-03-13)
Primary citationLebioda, L.,Stec, B.,Brewer, J.M.,Tykarska, E.
Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution.
Biochemistry, 30:2823-2827, 1991
Cited by
PubMed Abstract: Enolase is a metalloenzyme which catalyzes the elimination of H2O from 2-phosphoglyceric acid (PGA) to form phosphoenolpyruvate (PEP). Mg2+ and Zn2+ are cofactors which strongly bind and activate the enzyme. Ca2+ also binds strongly but does not produce activity. Phosphoglycolate (PG) is a competitive inhibitor of enolase. The structures of two inhibitory ternary complexes: yeast enolase-Ca2(+)-PGA and yeast enolase-Zn2(+)-PG, were determined by X-ray diffraction to 2.2-A resolution and were refined by crystallographic least-squares to R = 14.8% and 15.7%, respectively, with good geometries of the models. These structures are compared with the structure of the precatalytic ternary complex enolase-Mg2(+)-PGA/PEP (Lebioda & Stec, 1991). In the complex enolase-Ca2(+)-PGA, the PGA molecule coordinates to the Ca2+ ion with the hydroxyl group, as in the precatalytic complex. The conformation of the PGA molecule is however different. In the active complex, the organic part of the PGA molecule is planar, similar to the product. In the inhibitory complex, the carboxylic group is in an orthonormal conformation. In the inhibitory complex enolase-Zn2(+)-PG, the PG molecule coordinates with the carboxylic group in a monodentate mode. In both inhibitory complexes, the conformational changes in flexible loops, which were observed in the precatalytic complex, do not take place. The lack of catalytic metal ion binding suggests that these conformational changes are necessary for the formation of the catalytic metal ion binding site.
PubMed: 2007121
DOI: 10.1021/bi00225a013
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.2 Å)
Structure validation

227111

PDB entries from 2024-11-06

PDB statisticsPDBj update infoContact PDBjnumon