4WIM
Crystal Structure of the GMP Synthetase from Plasmodium falciparum
Summary for 4WIM
Entry DOI | 10.2210/pdb4wim/pdb |
Related | 4WIN 4WIO |
Descriptor | GMP synthetase (2 entities in total) |
Functional Keywords | gmp synthetase, purine salvage pathway, lyase |
Biological source | Plasmodium falciparum 3D7 |
Total number of polymer chains | 2 |
Total formula weight | 130975.22 |
Authors | Ballut, L.,Violot, S.,Haser, R.,Aghajari, N. (deposition date: 2014-09-26, release date: 2015-12-02, Last modification date: 2024-01-10) |
Primary citation | Ballut, L.,Violot, S.,Shivakumaraswamy, S.,Thota, L.P.,Sathya, M.,Kunala, J.,Dijkstra, B.W.,Terreux, R.,Haser, R.,Balaram, H.,Aghajari, N. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation. Nat Commun, 6:8930-8930, 2015 Cited by PubMed Abstract: GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371-375 holding catalytic residues and in loop 376-401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme. PubMed: 26592566DOI: 10.1038/ncomms9930 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (3.6 Å) |
Structure validation
Download full validation report