Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4WBB

Single Turnover Autophosphorylation Cycle of the PKA RIIb Holoenzyme

Summary for 4WBB
Entry DOI10.2210/pdb4wbb/pdb
DescriptorcAMP-dependent protein kinase type II-beta regulatory subunit, cAMP-dependent protein kinase catalytic subunit alpha, CALCIUM ION, ... (5 entities in total)
Functional Keywordspka, complex, single turnover, oscillations, transferase
Biological sourceMus musculus (Mouse)
More
Total number of polymer chains2
Total formula weight87518.60
Authors
Zhang, P.,Knape, M.J.,Ahuja, L.G.,Keshwani, M.M.,King, C.C.,Sastri, M.,Herberg, F.W.,Taylor, S.S. (deposition date: 2014-09-02, release date: 2015-05-20, Last modification date: 2024-10-30)
Primary citationZhang, P.,Knape, M.J.,Ahuja, L.G.,Keshwani, M.M.,King, C.C.,Sastri, M.,Herberg, F.W.,Taylor, S.S.
Single Turnover Autophosphorylation Cycle of the PKA RII beta Holoenzyme.
Plos Biol., 13:e1002192-e1002192, 2015
Cited by
PubMed Abstract: To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RIIβ holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RIIβ subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RIIβ holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RIIβ holoenzyme since the RIIβ holoenzyme is located close to ion channels. The 2.8Å structure of an RIIβp2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-(β,γ-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRIIβ subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RIIβ signaling cycle, we show that release of pRIIβ in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RIIβ holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes.
PubMed: 26158466
DOI: 10.1371/journal.pbio.1002192
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.8 Å)
Structure validation

237423

PDB entries from 2025-06-11

PDB statisticsPDBj update infoContact PDBjnumon