Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4NOV

Xsa43E, a GH43 family enzyme from Butyrivibrio proteoclasticus

Summary for 4NOV
Entry DOI10.2210/pdb4nov/pdb
DescriptorXylosidase/arabinofuranosidase Xsa43E, CALCIUM ION, 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL, ... (4 entities in total)
Functional Keywords5 bladed beta-propellor, arabinofuranosidase, hydrolase
Biological sourceButyrivibrio proteoclasticus
Total number of polymer chains1
Total formula weight39758.24
Authors
Till, M.,Arcus, V.L. (deposition date: 2013-11-20, release date: 2014-10-08, Last modification date: 2024-11-20)
Primary citationTill, M.,Goldstone, D.,Card, G.,Attwood, G.T.,Moon, C.D.,Arcus, V.L.
Structural analysis of the GH43 enzyme Xsa43E from Butyrivibrio proteoclasticus
ACTA CRYSTALLOGR.,SECT.F, 70:1193-1198, 2014
Cited by
PubMed Abstract: The rumen of dairy cattle can be thought of as a large, stable fermentation vat and as such it houses a large and diverse community of microorganisms. The bacterium Butyrivibrio proteoclasticus is a representative of a significant component of this microbial community. It is a xylan-degrading organism whose genome encodes a large number of open reading frames annotated as fibre-degrading enzymes. This suite of enzymes is essential for the organism to utilize the plant material within the rumen as a fuel source, facilitating its survival in this competitive environment. Xsa43E, a GH43 enzyme from B. proteoclasticus, has been structurally and functionally characterized. Here, the structure of selenomethionine-derived Xsa43E determined to 1.3 Å resolution using single-wavelength anomalous diffraction is reported. Xsa43E possesses the characteristic five-bladed β-propeller domain seen in all GH43 enzymes. GH43 enzymes can have a range of functions, and the functional characterization of Xsa43E shows it to be an arabinofuranosidase capable of cleaving arabinose side chains from short segments of xylan. Full functional and structural characterization of xylan-degrading enzymes will aid in creating an enzyme cocktail that can be used to completely degrade plant material into simple sugars. These molecules have a range of applications as starting materials for many industrial processes, including renewable alternatives to fossil fuels.
PubMed: 25195890
DOI: 10.1107/S2053230X14014745
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.33 Å)
Structure validation

247947

PDB entries from 2026-01-21

PDB statisticsPDBj update infoContact PDBjnumon