Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4AMM

Crystal Structure of the Acyltransferase Domain of the Iterative Polyketide Synthase in Enediyne Biosynthesis Reveals the Molecular Basis of Substrate Specificity

Summary for 4AMM
Entry DOI10.2210/pdb4amm/pdb
Related4AMN 4AMO 4AMP
DescriptorDYNE8, CHLORIDE ION (3 entities in total)
Functional Keywordstransferase, dynemicin
Biological sourceMICROMONOSPORA CHERSINA
Total number of polymer chains1
Total formula weight40407.13
Authors
Liew, C.W.,Lescar, J. (deposition date: 2012-03-13, release date: 2012-05-23, Last modification date: 2023-12-20)
Primary citationLiew, C.W.,Nilsson, M.,Chen, M.W.,Sun, H.,Cornvik, T.,Liang, Z.,Lescar, J.
Crystal Structure of the Acyltransferase Domain of the Iterative Polyketide Synthase in Enediyne Biosynthesis.
J.Biol.Chem., 287:23203-, 2012
Cited by
PubMed Abstract: Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named AT(DYN10)) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser(651) residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.
PubMed: 22589546
DOI: 10.1074/JBC.M112.362210
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.4 Å)
Structure validation

229681

PDB entries from 2025-01-08

PDB statisticsPDBj update infoContact PDBjnumon