3M9K
Crystal structure of human thioredoxin C69/73S double-mutant, oxidized form
Summary for 3M9K
Entry DOI | 10.2210/pdb3m9k/pdb |
Related | 1ERT |
Descriptor | Thioredoxin, SULFATE ION, (4S,5S)-1,2-DITHIANE-4,5-DIOL, ... (4 entities in total) |
Functional Keywords | dimer, intermolecular disulfide bond, dtt, disulfide bond, s-nitrosylation, oxidoreductase |
Biological source | Homo sapiens (human) |
Cellular location | Nucleus: P10599 |
Total number of polymer chains | 2 |
Total formula weight | 23973.18 |
Authors | Weichsel, A.,Montfort, W.R. (deposition date: 2010-03-22, release date: 2010-08-11, Last modification date: 2024-11-27) |
Primary citation | Weichsel, A.,Kem, M.,Montfort, W.R. Crystal structure of human thioredoxin revealing an unraveled helix and exposed S-nitrosation site. Protein Sci., 19:1801-1806, 2010 Cited by PubMed Abstract: Thioredoxins reduce disulfide bonds and other thiol modifications in all cells using a CXXC motif. Human thioredoxin 1 is unusual in that it codes for an additional three cysteines in its 105 amino acid sequence, each of which have been implicated in other reductive activities. Cys 62 and Cys 69 are buried in the protein interior and lie at either end of a short helix (helix 3), and yet can disulfide link under oxidizing conditions. Cys 62 is readily S-nitrosated, giving rise to a SNO modification, which is also buried. Here, we present two crystal structures of the C69S/C73S mutant protein under oxidizing (1.5 A) and reducing (1.1 A) conditions. In the oxidized structure, helix 3 is unraveled and displays a new conformation that is stabilized by a series of new hydrogen bonds and a disulfide link with Cys 62 in a neighboring molecule. The new conformation provides an explanation for how a completely buried residue can participate in SNO exchange reactions. PubMed: 20662007DOI: 10.1002/pro.455 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.5 Å) |
Structure validation
Download full validation report
