Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

3G6O

Crystal structure of P. aeruginosa bacteriophytochrome PaBphP photosensory core domain mutant Q188L

Summary for 3G6O
Entry DOI10.2210/pdb3g6o/pdb
Related3C2W 3IBR
DescriptorBacteriophytochrome, BILIVERDINE IX ALPHA (3 entities in total)
Functional Keywordsalpha/beta structure, pas domain, chromophore, kinase, phosphoprotein, photoreceptor protein, receptor, sensory transduction, transferase, signaling protein
Biological sourcePseudomonas aeruginosa
Total number of polymer chains2
Total formula weight114781.82
Authors
Yang, X.,Kuk, J.,Moffat, K. (deposition date: 2009-02-07, release date: 2009-09-22, Last modification date: 2024-11-20)
Primary citationYang, X.,Kuk, J.,Moffat, K.
Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome
Proc.Natl.Acad.Sci.USA, 106:15639-15644, 2009
Cited by
PubMed Abstract: Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria by means of reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here, we report the crystal structure of the Q188L mutant of Pseudomonas aeruginosa bacteriophytochrome (PaBphP) photosensory core module, which exhibits altered photoconversion behavior and different crystal packing from wild type. We observe two distinct chromophore conformations in the Q188L crystal structure that we identify with the Pfr and Pr states. The Pr/Pfr compositions, varying from crystal to crystal, seem to correlate with light conditions under which the Q188L crystals are cryoprotected. We also compare all known Pr and Pfr structures. Using site-directed mutagenesis, we identify residues that are involved in stabilizing the 15Ea (Pfr) and 15Za (Pr) configurations of the biliverdin chromophore. Specifically, Ser-261 appears to be essential to form a stable Pr state in PaBphP, possibly by means of its interaction with the propionate group of ring C. We propose a "flip-and-rotate" model that summarizes the major conformational differences between the Pr and Pfr states of the chromophore and its binding pocket.
PubMed: 19720999
DOI: 10.1073/pnas.0902178106
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.85 Å)
Structure validation

248335

PDB entries from 2026-01-28

PDB statisticsPDBj update infoContact PDBjnumon