3FCI
Complex of UNG2 and a fragment-based designed inhibitor
Summary for 3FCI
Entry DOI | 10.2210/pdb3fci/pdb |
Related | 3FCF 3FCK 3FCL |
Descriptor | Uracil-DNA glycosylase, 3-{(E)-[(3-{[(2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)methyl]amino}propoxy)imino]methyl}benzoic acid, SODIUM ION, ... (5 entities in total) |
Functional Keywords | dna repair, uracil, uracil dna glycosylase, alternative splicing, disease mutation, dna damage, glycosidase, host-virus interaction, hydrolase, mitochondrion, nucleus, phosphoprotein, transit peptide |
Biological source | Homo sapiens (Human) |
Cellular location | Isoform 1: Mitochondrion. Isoform 2: Nucleus: P13051 |
Total number of polymer chains | 1 |
Total formula weight | 26029.63 |
Authors | Bianchet, M.A.,Chung, S.,Parker, J.B.,Amzel, L.M.,Stivers, J.T. (deposition date: 2008-11-21, release date: 2009-04-28, Last modification date: 2023-12-27) |
Primary citation | Chung, S.,Parker, J.B.,Bianchet, M.,Amzel, L.M.,Stivers, J.T. Impact of linker strain and flexibility in the design of a fragment-based inhibitor Nat.Chem.Biol., 5:407-413, 2009 Cited by PubMed Abstract: The linking together of molecular fragments that bind to adjacent sites on an enzyme can lead to high-affinity inhibitors. Ideally, this strategy would use linkers that do not perturb the optimal binding geometries of the fragments and do not have excessive conformational flexibility that would increase the entropic penalty of binding. In reality, these aims are seldom realized owing to limitations in linker chemistry. Here we systematically explore the energetic and structural effects of rigid and flexible linkers on the binding of a fragment-based inhibitor of human uracil DNA glycosylase. Analysis of the free energies of binding in combination with cocrystal structures shows that the flexibility and strain of a given linker can have a substantial impact on binding affinity even when the binding fragments are optimally positioned. Such effects are not apparent from inspection of structures and underscore the importance of linker optimization in fragment-based drug discovery efforts. PubMed: 19396178DOI: 10.1038/nchembio.163 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.27 Å) |
Structure validation
Download full validation report