Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

3EEM

Candida glabrata Dihydrofolate Reductase complexed with 2,4-diamino-5-[3-methyl-3-(3-methoxy-5-(2,6-dimethylphenyl)phenyl)prop-1-ynyl]-6-methylpyrimidine(UCP111D26M) and NADPH

Summary for 3EEM
Entry DOI10.2210/pdb3eem/pdb
Related3EEJ 3EEK 3EEL
DescriptorDihydrofolate reductase, NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE, 5-[(3R)-3-(5-methoxy-2',6'-dimethylbiphenyl-3-yl)but-1-yn-1-yl]-6-methylpyrimidine-2,4-diamine, ... (4 entities in total)
Functional Keywordsenzyme, oxidoreductase
Biological sourceCandida glabrata (yeast)
Total number of polymer chains2
Total formula weight55118.49
Authors
Liu, J.,Anderson, A. (deposition date: 2008-09-04, release date: 2009-08-18, Last modification date: 2024-02-21)
Primary citationLiu, J.,Bolstad, D.B.,Smith, A.E.,Priestley, N.D.,Wright, D.L.,Anderson, A.C.
Probing the active site of Candida glabrata dihydrofolate reductase with high resolution crystal structures and the synthesis of new inhibitors
Chem.Biol.Drug Des., 73:62-74, 2009
Cited by
PubMed Abstract: Candida glabrata, a fungal strain resistant to many commonly administered antifungal agents, has become an emerging threat to human health. In previous work, we validated that the essential enzyme, dihydrofolate reductase, is a drug target in C. glabrata. Using a crystal structure of dihydrofolate reductase from C. glabrata bound to an initial lead compound, we designed a class of biphenyl antifolates that potently and selectively inhibit both the enzyme and the growth of the fungal culture. In this work, we explore the structure-activity relationships of this class of antifolates with four new high resolution crystal structures of enzyme:inhibitor complexes and the synthesis of four new inhibitors. The designed inhibitors are intended to probe key hydrophobic pockets visible in the crystal structure. The crystal structures and an evaluation of the new compounds reveal that methyl groups at the meta and para positions of the distal phenyl ring achieve the greatest number of interactions with the pathogenic enzyme and the greatest degree of selectivity over the human enzyme. Additionally, antifungal activity can be tuned with substitution patterns at the propargyl and para-phenyl positions.
PubMed: 19152636
DOI: 10.1111/j.1747-0285.2008.00745.x
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.11 Å)
Structure validation

227344

PDB entries from 2024-11-13

PDB statisticsPDBj update infoContact PDBjnumon