Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2HNL

Structure of the prostaglandin D synthase from the parasitic nematode Onchocerca volvulus

Summary for 2HNL
Entry DOI10.2210/pdb2hnl/pdb
DescriptorGlutathione S-transferase 1, GLUTATHIONE (3 entities in total)
Functional Keywordsprostaglandin synthase, glutathione s-transferase, river blindness, onchocerca volvulus, immune modulation, transferase
Biological sourceOnchocerca volvulus
Total number of polymer chains2
Total formula weight52053.85
Authors
Perbandt, M.,Hoppner, J.,Betzel, C.,Liebau, E. (deposition date: 2006-07-13, release date: 2007-07-17, Last modification date: 2023-08-30)
Primary citationPerbandt, M.,Hoppner, J.,Burmeister, C.,Luersen, K.,Betzel, C.,Liebau, E.
Structure of the extracellular glutathione S-transferase OvGST1 from the human pathogenic parasite Onchocerca volvulus.
J.Mol.Biol., 377:501-511, 2008
Cited by
PubMed Abstract: Onchocerciasis or river blindness, caused by the filarial worm Onchocerca volvulus, is the world's second leading infectious cause of blindness. In order to chronically infect the host, O. volvulus has evolved molecular strategies that influence and direct immune responses away from the modes most damaging to it. The O. volvulus GST1 (OvGST1) is a unique glutathione S-transferase (GST) in that it is a glycoprotein and possesses a signal peptide that is cleaved off in the process of maturation. The mature protein starts with a 25-amino-acid extension not present in other GSTs. In all life stages of the filarial worm, it is located directly at the parasite-host interface. Here, the OvGST1 functions as a highly specific glutathione-dependent prostaglandin D synthase (PGDS). The enzyme therefore has the potential to participate in the modulation of immune responses by contributing to the production of parasite-derived prostanoids and restraining the host's effector responses, making it a tempting target for chemotherapy and vaccine development. Here, we report the crystal structure of the OvGST1 bound to its cofactor glutathione at 2.0 A resolution. The structure reveals an overall structural homology to the haematopoietic PGDS from vertebrates but, surprisingly, also a large conformational change in the prostaglandin binding pocket. The observed differences reveal a different vicinity of the prostaglandin H(2) binding pocket that demands another prostaglandin H(2) binding mode to that proposed for the vertebrate PGDS. Finally, a putative substrate binding mode for prostaglandin H(2) is postulated based on the observed structural insights.
PubMed: 18258257
DOI: 10.1016/j.jmb.2008.01.029
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2 Å)
Structure validation

246704

PDB entries from 2025-12-24

PDB statisticsPDBj update infoContact PDBjnumon