Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

2ANL

X-ray crystal structure of the aspartic protease plasmepsin 4 from the malarial parasite plasmodium malariae bound to an allophenylnorstatine based inhibitor

Summary for 2ANL
Entry DOI10.2210/pdb2anl/pdb
Related PRD IDPRD_000566
Descriptorplasmepsin IV, (4R)-3-{(2S,3S)-2-hydroxy-3-[(3-hydroxy-2-methylbenzoyl)amino]-4-phenylbutanoyl}-5,5-dimethyl-N-(2-methylbenzyl)-1,3-thiazolidine-4-carboxamide (3 entities in total)
Functional Keywordsplasmodium parasite, plasmepsin 4, aspartic protease, hydrolase, hydrolase-hydrolase inhibitor complex, hydrolase/hydrolase inhibitor
Biological sourcePlasmodium malariae
Total number of polymer chains2
Total formula weight75413.09
Authors
Primary citationClemente, J.C.,Govindasamy, L.,Madabushi, A.,Fisher, S.Z.,Moose, R.E.,Yowell, C.A.,Hidaka, K.,Kimura, T.,Hayashi, Y.,Kiso, Y.,Agbandje-McKenna, M.,Dame, J.B.,Dunn, B.M.,McKenna, R.
Structure of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae bound to an allophenylnorstatine-based inhibitor.
Acta Crystallogr.,Sect.D, 62:246-252, 2006
Cited by
PubMed Abstract: The malarial parasite continues to be one of the leading causes of death in many developing countries. With the development of resistance to the currently available treatments, the discovery of new therapeutics is imperative. Currently, the plasmepsin enzymes found in the food vacuole of the parasite are a chief target for drug development. Allophenylnorstatine-based compounds originally designed to inhibit HIV-1 protease have shown efficacy against all four plasmepsin enzymes found in the food vacuole of Plasmodium falciparum. In this study, the first crystal structure of P. malariae plasmepsin 4 (PmPM4) bound to the allophenylnorstatine-based compound KNI-764 is described at 3.3 Angstroms resolution. The PmPM4-inhibitor complex crystallized in the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 95.9, b = 112.6, c = 90.4 Angstroms, with two molecules in the asymmetric unit related by a non-crystallographic symmetry operator. The structure was refined to a final R factor of 24.7%. The complex showed the inhibitor in an unexpected binding orientation with allophenylnorstatine occupying the S1' pocket. The P2 group was found outside the S2 pocket, wedged between the flap and a juxtaposed loop. Inhibition analysis of PmPM4 also suggests the potential for allophenylnorstatine-based compounds to be effective against all species of malaria infecting humans and for the future development of a broad-based inhibitor.
PubMed: 16510971
DOI: 10.1107/S0907444905041260
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.3 Å)
Structure validation

226707

PDB entries from 2024-10-30

PDB statisticsPDBj update infoContact PDBjnumon