Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2AMD

Crystal Structure Of SARS_CoV Mpro in Complex with an Inhibitor N9

Summary for 2AMD
Entry DOI10.2210/pdb2amd/pdb
Related1UJ1 2AMP 2AMQ
Descriptor3C-like proteinase, N-(3-FUROYL)-D-VALYL-L-VALYL-N~1~-((1R,2Z)-4-ETHOXY-4-OXO-1-{[(3S)-2-OXOPYRROLIDIN-3-YL]METHYL}BUT-2-ENYL)-D-LEUCINAMIDE (3 entities in total)
Functional Keywordsanti-parallel b-barrel, anti-parallel a-helices, hydrolase
Biological sourceSARS coronavirus
Cellular locationNon-structural protein 3: Host membrane; Multi-pass membrane protein (Potential). Non-structural protein 4: Host membrane; Multi-pass membrane protein (Potential). Non-structural protein 6: Host membrane; Multi-pass membrane protein (Potential). Non-structural protein 7: Host cytoplasm, host perinuclear region (By similarity). Non-structural protein 8: Host cytoplasm, host perinuclear region (By similarity). Non-structural protein 9: Host cytoplasm, host perinuclear region (By similarity). Non-structural protein 10: Host cytoplasm, host perinuclear region (By similarity). Helicase: Host endoplasmic reticulum-Golgi intermediate compartment (Potential). Uridylate-specific endoribonuclease: Host cytoplasm, host perinuclear region (By similarity): P59641
Total number of polymer chains2
Total formula weight69839.69
Authors
Yang, H.,Xue, X.,Yang, K.,Zhao, Q.,Bartlam, M.,Rao, Z. (deposition date: 2005-08-09, release date: 2005-09-13, Last modification date: 2024-11-20)
Primary citationYang, H.,Xie, W.,Xue, X.,Yang, K.,Ma, J.,Liang, W.,Zhao, Q.,Zhou, Z.,Pei, D.,Ziebuhr, J.,Hilgenfeld, R.,Yuen, K.Y.,Wong, L.,Gao, G.,Chen, S.,Chen, Z.,Ma, D.,Bartlam, M.,Rao, Z.
Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases.
Plos Biol., 3:324-334, 2005
Cited by
PubMed Abstract: The genus Coronavirus contains about 25 species of coronaviruses (CoVs), which are important pathogens causing highly prevalent diseases and often severe or fatal in humans and animals. No licensed specific drugs are available to prevent their infection. Different host receptors for cellular entry, poorly conserved structural proteins (antigens), and the high mutation and recombination rates of CoVs pose a significant problem in the development of wide-spectrum anti-CoV drugs and vaccines. CoV main proteases (M(pro)s), which are key enzymes in viral gene expression and replication, were revealed to share a highly conservative substrate-recognition pocket by comparison of four crystal structures and a homology model representing all three genetic clusters of the genus Coronavirus. This conclusion was further supported by enzyme activity assays. Mechanism-based irreversible inhibitors were designed, based on this conserved structural region, and a uniform inhibition mechanism was elucidated from the structures of Mpro-inhibitor complexes from severe acute respiratory syndrome-CoV and porcine transmissible gastroenteritis virus. A structure-assisted optimization program has yielded compounds with fast in vitro inactivation of multiple CoV M(pro)s, potent antiviral activity, and extremely low cellular toxicity in cell-based assays. Further modification could rapidly lead to the discovery of a single agent with clinical potential against existing and possible future emerging CoV-related diseases.
PubMed: 16128623
DOI: 10.1371/journal.pbio.0030324
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.85 Å)
Structure validation

229564

PDB entries from 2025-01-01

PDB statisticsPDBj update infoContact PDBjnumon