Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2AIK

Formylglycine generating enzyme C336S mutant covalently bound to substrate peptide LCTPSRA

Summary for 2AIK
Entry DOI10.2210/pdb2aik/pdb
Related2AII 2AIJ
DescriptorSulfatase modifying factor 1, LCTPSRA peptide from Arylsulfatase A, 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose, ... (6 entities in total)
Functional Keywordsformylglycine, post-translational modification, endoplasmic reticulum, sulfatase, hydrolase activator, protein binding
Biological sourceHomo sapiens (human)
More
Cellular locationEndoplasmic reticulum lumen: Q8NBK3
Lysosome: P15289
Total number of polymer chains2
Total formula weight33398.51
Authors
Roeser, D.,Rudolph, M.G. (deposition date: 2005-07-29, release date: 2005-12-13, Last modification date: 2024-10-16)
Primary citationRoeser, D.,Preusser-Kunze, A.,Schmidt, B.,Gasow, K.,Wittmann, J.G.,Dierks, T.,von Figura, K.,Rudolph, M.G.
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme
Proc.Natl.Acad.Sci.Usa, 103:81-86, 2006
Cited by
PubMed Abstract: The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.
PubMed: 16368756
DOI: 10.1073/pnas.0507592102
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.73 Å)
Structure validation

237423

PDB entries from 2025-06-11

PDB statisticsPDBj update infoContact PDBjnumon