Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

1T2F

Human B lactate dehydrogenase complexed with NAD+ and 4-hydroxy-1,2,5-oxadiazole-3-carboxylic acid

Summary for 1T2F
Entry DOI10.2210/pdb1t2f/pdb
Related1LDG 1T24 1T25 1T26 1T2C 1T2D 1T2E
DescriptorL-lactate dehydrogenase B chain, NICOTINAMIDE-ADENINE-DINUCLEOTIDE, 4-HYDROXY-1,2,5-OXADIAZOLE-3-CARBOXYLIC ACID, ... (4 entities in total)
Functional Keywordsprotein-ligand complex, oxidoreductase
Biological sourceHomo sapiens (human)
Cellular locationCytoplasm: P07195
Total number of polymer chains4
Total formula weight149495.11
Authors
Primary citationCameron, A.,Read, J.,Tranter, R.,Winter, V.J.,Sessions, R.B.,Brady, R.L.,Vivas, L.,Easton, A.,Kendrick, H.,Croft, S.L.,Barros, D.,Lavandera, J.L.,Martin, J.J.,Risco, F.,Garcia-Ochoa, S.,Gamo, F.J.,Sanz, L.,Leon, L.,Ruiz, J.R.,Gabarro, R.,Mallo, A.,De Las Heras, F.G.
Identification and Activity of a Series of Azole-based Compounds with Lactate Dehydrogenase-directed Anti-malarial Activity.
J.Biol.Chem., 279:31429-31439, 2004
Cited by
PubMed Abstract: Plasmodium falciparum, the causative agent of malaria, relies extensively on glycolysis coupled with homolactic fermentation during its blood-borne stages for energy production. Selective inhibitors of the parasite lactate dehydrogenase (LDH), central to NAD(+) regeneration, therefore potentially provide a route to new antimalarial drugs directed against a novel molecular target. A series of heterocyclic, azole-based compounds are described that preferentially inhibit P. falciparum LDH at sub-micromolar concentrations, typically at concentrations about 100-fold lower than required for human lactate dehydrogenase inhibition. Crystal structures show these competitive inhibitors form a network of interactions with amino acids within the active site of the enzyme, stacking alongside the nicotinamide ring of the NAD(+) cofactor. These compounds display modest activity against parasitized erythrocytes, including parasite strains with known resistance to existing anti-malarials and against Plasmodium berghei in BALB/c mice. Initial toxicity data suggest the azole derivatives have generally low cytotoxicity, and preliminary pharmoco-kinetic data show favorable bioavailability and circulation times. These encouraging results suggest that further enhancement of these structures may yield candidates suitable for consideration as new therapeutics for the treatment of malaria. In combination these studies also provide strong support for the validity of targeting the Plasmodium glycolytic pathway and, in particular, LDH in the search for novel anti-malarials.
PubMed: 15117937
DOI: 10.1074/jbc.M402433200
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3 Å)
Structure validation

226707

数据于2024-10-30公开中

PDB statisticsPDBj update infoContact PDBjnumon