Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1PNL

PENICILLIN ACYLASE HAS A SINGLE-AMINO-ACID CATALYTIC CENTRE

Summary for 1PNL
Entry DOI10.2210/pdb1pnl/pdb
DescriptorPENICILLIN AMIDOHYDROLASE, CALCIUM ION, 2-PHENYLACETIC ACID, ... (5 entities in total)
Functional Keywordsantibiotic resistance
Biological sourceEscherichia coli
More
Cellular locationPeriplasm: P06875 P06875
Total number of polymer chains2
Total formula weight86444.55
Authors
Duggleby, H.J.,Moody, P.C.E. (deposition date: 1995-03-16, release date: 1996-03-16, Last modification date: 2024-02-14)
Primary citationDuggleby, H.J.,Tolley, S.P.,Hill, C.P.,Dodson, E.J.,Dodson, G.,Moody, P.C.
Penicillin acylase has a single-amino-acid catalytic centre.
Nature, 373:264-268, 1995
Cited by
PubMed Abstract: Penicillin acylase (penicillin amidohydrolase, EC 3.5.1.11) is widely distributed among microorganisms, including bacteria, yeast and filamentous fungi. It is used on an industrial scale for the production of 6-aminopenicillanic acid, the starting material for the synthesis of semi-synthetic penicillins. Its in vivo role remains unclear, however, and the observation that expression of the Escherichia coli enzyme in vivo is regulated by both temperature and phenylacetic acid has prompted speculation that the enzyme could be involved in the assimilation of aromatic compounds as carbon sources in the organism's free-living mode. The mature E. coli enzyme is a periplasmic 80K heterodimer of A and B chains (209 and 566 amino acids, respectively) synthesized as a single cytoplasmic precursor containing a 26-amino-acid signal sequence to direct export to the cytoplasm and a 54-amino-acid spacer between the A and B chains which may influence the final folding of the chains. The N-terminal serine of the B chain reacts with phenylmethylsulphonyl fluoride, which is consistent with a catalytic role for the serine hydroxyl group. Modifying this serine to a cysteine inactivates the enzyme, whereas threonine, arginine or glycine substitution prevents in vivo processing of the enzyme, indicating that this must be an important recognition site for cleavage. Here we report the crystal structure of penicillin acylase at 1.9 A resolution. Our analysis shows that the environment of the catalytically active N-terminal serine of the B chain contains no adjacent histidine equivalent to that found in the serine proteases. The nearest base to the hydroxyl of this serine is its own alpha-amino group, which may act by a new mechanism to endow the enzyme with its catalytic properties.
PubMed: 7816145
DOI: 10.1038/373264a0
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.5 Å)
Structure validation

229380

PDB entries from 2024-12-25

PDB statisticsPDBj update infoContact PDBjnumon