1MSB
STRUCTURE OF THE CALCIUM-DEPENDENT LECTIN DOMAIN FROM A RAT MANNOSE-BINDING PROTEIN DETERMINED BY MAD PHASING
Summary for 1MSB
Entry DOI | 10.2210/pdb1msb/pdb |
Descriptor | MANNOSE-BINDING PROTEIN-A, HOLMIUM ATOM (3 entities in total) |
Functional Keywords | hepatic lectin |
Biological source | Rattus rattus (black rat) |
Cellular location | Secreted: P19999 |
Total number of polymer chains | 2 |
Total formula weight | 26036.02 |
Authors | Weis, W.I.,Drickamer, K.,Hendrickson, W.A. (deposition date: 1991-09-23, release date: 1992-01-15, Last modification date: 2024-10-23) |
Primary citation | Weis, W.I.,Kahn, R.,Fourme, R.,Drickamer, K.,Hendrickson, W.A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science, 254:1608-1615, 1991 Cited by PubMed Abstract: Calcium-dependent (C-type) animal lectins participate in many cell surface recognition events mediated by protein-carbohydrate interactions. The C-type lectin family includes cell adhesion molecules, endocytic receptors, and extracellular matrix proteins. Mammalian mannose-binding proteins are C-type lectins that function in antibody-independent host defense against pathogens. The crystal structure of the carbohydrate-recognition domain of a rat mannose-binding protein, determined as the holmium-substituted complex by multiwavelength anomalous dispersion (MAD) phasing, reveals an unusual fold consisting of two distinct regions, one of which contains extensive nonregular secondary structure stabilized by two holmium ions. The structure explains the conservation of 32 residues in all C-type carbohydrate-recognition domains, suggesting that the fold seen here is common to these domains. The strong anomalous scattering observed at the Ho LIII edge demonstrates that traditional heavy atom complexes will be generally amenable to the MAD phasing method. PubMed: 1721241PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.3 Å) |
Structure validation
Download full validation report