Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1LAE

Solution Structure of the DNA 13-mer Hairpin CGCGGTXTCCGCG (X=PdG) Containing the 1,N2-propanodeoxyguanosine Adduct at the Seventh Position

Summary for 1LAE
Entry DOI10.2210/pdb1lae/pdb
Related1LA8 1LAS 1lai 1laq
Descriptor5'-D(*CP*GP*CP*GP*GP*TP*(P)P*TP*CP*CP*GP*CP*G)-3' (1 entity in total)
Functional Keywordsdna, hairpin, propanpodeoxyguanosine
Total number of polymer chains1
Total formula weight4024.64
Authors
Weisenseel, J.P.,Reddy, G.R.,Marnett, L.J.,Stone, M.P. (deposition date: 2002-03-28, release date: 2002-04-17, Last modification date: 2024-05-22)
Primary citationWeisenseel, J.P.,Reddy, G.R.,Marnett, L.J.,Stone, M.P.
Structure of the 1,N(2)-propanodeoxyguanosine adduct in a three-base DNA hairpin loop derived from a palindrome in the Salmonella typhimurium hisD3052 gene.
Chem.Res.Toxicol., 15:140-152, 2002
Cited by
PubMed Abstract: The solution structure of the 1,N(2)-propanodeoxyguanosine (PdG) adduct was determined in a 3-base hairpin loop formed by d(CGCGGTXTCCGCG) (X = PdG). This sequence is contained within the Salmonella typhimurium hisD3052 gene, a hotspot for frameshift mutagenesis. PdG provides a structural model for the primary adduct induced in DNA by malondialdehyde, the 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-a]-purin-10(3H)-one (M(1)G) lesion. The solution structure of the PdG-containing hairpin was refined by molecular dynamics calculations restrained by a combination of NMR-derived distances and dihedral angles, using a simulated annealing protocol. The structure of the PdG-modified hairpin consisted of a five-base-pair stem and a three-base loop consisting of T(6), X(7), and T(8). T(6) projected into the minor groove of the stem adjacent to G(4). The modified base X(7) stacked on top of the duplex stem and wedged between bases T(8) and C(9). The PdG moiety was oriented such that the imidazole proton was facing the minor groove of the stem and the exocyclic protons projected into the major groove. The structure of the adducted hairpin was compared with the structure of the corresponding unmodified oligodeoxynucleotide, and was found to be similar. There was a minor difference in the backbone angles of the G and PdG Hairpins at the phosphate linkage between G(5) and T(6) involving the G(5) epsilon angle and T(6) alpha and beta angles. The PdG-modified hairpin exhibited an increase in T(m) of approximately 2 degrees C compared to the unmodified hairpin. The structural and thermodynamic similarities suggested that PdG does not stabilize this hairpin and thus may not promote its extrusion in duplex DNA. The structural results are correlated with the results of site-specific mutagenesis experiments in the same sequence, which do not show evidence of frameshift mutations associated with hairpin loop formation. The geometry of this three-base loop is similar to that of other DNA hairpins containing three-base loops, and suggests a common motif for the folding of these loops.
PubMed: 11849039
DOI: 10.1021/tx010107f
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

246704

PDB entries from 2025-12-24

PDB statisticsPDBj update infoContact PDBjnumon