[English] 日本語

- PDB-8yop: Cryo-EM structure of the human 80S ribosome with 4 um Tigecycline -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 8yop | ||||||
---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of the human 80S ribosome with 4 um Tigecycline | ||||||
![]() |
| ||||||
![]() | RIBOSOME / Tigecycline / antibiotic | ||||||
Function / homology | ![]() embryonic brain development / eukaryotic 80S initiation complex / negative regulation of protein neddylation / negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / negative regulation of formation of translation preinitiation complex / regulation of G1 to G0 transition / axial mesoderm development ...embryonic brain development / eukaryotic 80S initiation complex / negative regulation of protein neddylation / negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / negative regulation of formation of translation preinitiation complex / regulation of G1 to G0 transition / axial mesoderm development / negative regulation of peptidyl-serine phosphorylation / positive regulation of respiratory burst involved in inflammatory response / ribosomal protein import into nucleus / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / regulation of translation involved in cellular response to UV / positive regulation of gastrulation / nucleolus organization / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / protein tyrosine kinase inhibitor activity / protein-DNA complex disassembly / 90S preribosome assembly / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity / positive regulation of Golgi to plasma membrane protein transport / translation at postsynapse / TNFR1-mediated ceramide production / negative regulation of DNA repair / negative regulation of RNA splicing / mammalian oogenesis stage / positive regulation of DNA damage response, signal transduction by p53 class mediator / GAIT complex / A band / supercoiled DNA binding / activation-induced cell death of T cells / TORC2 complex binding / neural crest cell differentiation / alpha-beta T cell differentiation / G1 to G0 transition / NF-kappaB complex / oxidized purine DNA binding / cysteine-type endopeptidase activator activity involved in apoptotic process / middle ear morphogenesis / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / exit from mitosis / ubiquitin-like protein conjugating enzyme binding / regulation of establishment of cell polarity / translation at presynapse / positive regulation of ubiquitin-protein transferase activity / rRNA modification in the nucleus and cytosol / Formation of the ternary complex, and subsequently, the 43S complex / negative regulation of phagocytosis / erythrocyte homeostasis / optic nerve development / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / protein kinase A binding / retinal ganglion cell axon guidance / negative regulation of ubiquitin protein ligase activity / pigmentation / Ribosomal scanning and start codon recognition / ion channel inhibitor activity / homeostatic process / Translation initiation complex formation / response to aldosterone / positive regulation of mitochondrial depolarization / positive regulation of T cell receptor signaling pathway / macrophage chemotaxis / positive regulation of activated T cell proliferation / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / lung morphogenesis / monocyte chemotaxis / negative regulation of translational frameshifting / Protein hydroxylation / BH3 domain binding / TOR signaling / SARS-CoV-1 modulates host translation machinery / regulation of cell division / mTORC1-mediated signalling / T cell proliferation involved in immune response / Peptide chain elongation / iron-sulfur cluster binding / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Selenocysteine synthesis / positive regulation of signal transduction by p53 class mediator / Formation of a pool of free 40S subunits / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Eukaryotic Translation Termination / ubiquitin ligase inhibitor activity / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / blastocyst development / cellular response to actinomycin D / negative regulation of ubiquitin-dependent protein catabolic process / Viral mRNA Translation / phagocytic cup / negative regulation of respiratory burst involved in inflammatory response / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / protein localization to nucleus Similarity search - Function | ||||||
Biological species | ![]() | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.2 Å | ||||||
![]() | Li, X. / Wang, M. / Denk, T. / Cheng, J. | ||||||
Funding support | 1items
| ||||||
![]() | ![]() Title: Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline. Authors: Xiang Li / Mengjiao Wang / Timo Denk / Robert Buschauer / Yi Li / Roland Beckmann / Jingdong Cheng / ![]() ![]() Abstract: Tigecycline is widely used for treating complicated bacterial infections for which there are no effective drugs. It inhibits bacterial protein translation by blocking the ribosomal A-site. However, ...Tigecycline is widely used for treating complicated bacterial infections for which there are no effective drugs. It inhibits bacterial protein translation by blocking the ribosomal A-site. However, even though it is also cytotoxic for human cells, the molecular mechanism of its inhibition remains unclear. Here, we present cryo-EM structures of tigecycline-bound human mitochondrial 55S, 39S, cytoplasmic 80S and yeast cytoplasmic 80S ribosomes. We find that at clinically relevant concentrations, tigecycline effectively targets human 55S mitoribosomes, potentially, by hindering A-site tRNA accommodation and by blocking the peptidyl transfer center. In contrast, tigecycline does not bind to human 80S ribosomes under physiological concentrations. However, at high tigecycline concentrations, in addition to blocking the A-site, both human and yeast 80S ribosomes bind tigecycline at another conserved binding site restricting the movement of the L1 stalk. In conclusion, the observed distinct binding properties of tigecycline may guide new pathways for drug design and therapy. | ||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 4.8 MB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | Display | ![]() | |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 2.1 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 2.2 MB | Display | |
Data in XML | ![]() | 352.3 KB | Display | |
Data in CIF | ![]() | 621.1 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 39456MC ![]() 8k2aC ![]() 8k2bC ![]() 8k2cC ![]() 8k2dC ![]() 8k82C ![]() 8xsxC ![]() 8xsyC ![]() 8xszC ![]() 8xt0C ![]() 8xt1C ![]() 8xt2C ![]() 8xt3C ![]() 8yooC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-RNA chain , 4 types, 4 molecules L5L7L8S2
#1: RNA chain | Mass: 1640182.000 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#2: RNA chain | Mass: 38998.078 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#3: RNA chain | Mass: 50449.812 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#49: RNA chain | Mass: 602752.875 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
+60S ribosomal protein ... , 42 types, 42 molecules LALBLCLDLELFLGLHLJLLLMLNLOLPLQLRLSLTLULVLWLXLYLZLaLbLcLdLeLf...
-Large ribosomal subunit protein ... , 2 types, 2 molecules LILs
#12: Protein | Mass: 24630.061 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#46: Protein | Mass: 34309.418 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
-Protein , 3 types, 3 molecules LmSgSf
#41: Protein | Mass: 14758.394 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#70: Protein | Mass: 35115.652 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#82: Protein | Mass: 18004.041 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
+40S ribosomal protein ... , 31 types, 31 molecules SASBSDSESFSHSISKSLSPSQSRSSSTSUSVSXSaScSdSCSGSJSMSNSOSWSYSZSbSe
-Non-polymers , 2 types, 263 molecules 


#83: Chemical | ChemComp-MG / #84: Chemical | ChemComp-ZN / |
---|
-Details
Has ligand of interest | N |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: 80S ribosome with 5um tigecycline / Type: RIBOSOME / Entity ID: #1-#82 / Source: NATURAL |
---|---|
Source (natural) | Organism: ![]() |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Specimen support | Grid material: COPPER / Grid type: Quantifoil R3/3 |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2500 nm / Nominal defocus min: 1000 nm |
Specimen holder | Cryogen: NITROGEN |
Image recording | Electron dose: 44 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-
Processing
EM software |
| |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Details: cryoSPARC / Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | |||||||||||||||||||||
3D reconstruction | Resolution: 2.2 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 98884 / Symmetry type: POINT | |||||||||||||||||||||
Atomic model building | Protocol: RIGID BODY FIT / Space: REAL | |||||||||||||||||||||
Atomic model building | PDB-ID: 6Z6M Accession code: 6Z6M / Source name: PDB / Type: experimental model |