[English] 日本語
Yorodumi
- PDB-7ocf: Active state GluA1/A2 AMPA receptor in complex with TARP gamma 8 ... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7ocf
TitleActive state GluA1/A2 AMPA receptor in complex with TARP gamma 8 and CNIH2 (LBD-TMD)
Components
  • (Isoform Flip of Glutamate receptor ...) x 2
  • Protein cornichon homolog 2
  • Voltage-dependent calcium channel gamma-8 subunit
KeywordsMEMBRANE PROTEIN / AMPAR / ion channels / neurotransmission
Function / homology
Function and homology information


negative regulation of receptor localization to synapse / negative regulation of anterograde synaptic vesicle transport / Phase 2 - plateau phase / Phase 0 - rapid depolarisation / Cargo concentration in the ER / cellular response to amine stimulus / axonal spine / COPII-mediated vesicle transport / positive regulation of membrane potential / localization within membrane ...negative regulation of receptor localization to synapse / negative regulation of anterograde synaptic vesicle transport / Phase 2 - plateau phase / Phase 0 - rapid depolarisation / Cargo concentration in the ER / cellular response to amine stimulus / axonal spine / COPII-mediated vesicle transport / positive regulation of membrane potential / localization within membrane / chemical synaptic transmission, postsynaptic / cellular response to ammonium ion / neurotransmitter receptor transport, postsynaptic endosome to lysosome / L-type voltage-gated calcium channel complex / neurotransmitter receptor activity involved in regulation of postsynaptic cytosolic calcium ion concentration / LGI-ADAM interactions / neuron spine / myosin V binding / Trafficking of AMPA receptors / regulation of AMPA receptor activity / neurotransmitter receptor internalization / channel regulator activity / protein phosphatase 2B binding / dendritic spine membrane / postsynaptic neurotransmitter receptor diffusion trapping / response to arsenic-containing substance / cellular response to dsRNA / Synaptic adhesion-like molecules / long-term synaptic depression / beta-2 adrenergic receptor binding / protein kinase A binding / cellular response to peptide hormone stimulus / neuronal cell body membrane / spine synapse / spinal cord development / dendritic spine neck / dendritic spine head / Activation of AMPA receptors / response to lithium ion / perisynaptic space / cellular response to glycine / transmission of nerve impulse / AMPA glutamate receptor activity / regulation of postsynaptic membrane neurotransmitter receptor levels / Trafficking of GluR2-containing AMPA receptors / regulation of NMDA receptor activity / immunoglobulin binding / calcium channel regulator activity / AMPA glutamate receptor complex / neuronal action potential / kainate selective glutamate receptor activity / excitatory synapse / ionotropic glutamate receptor complex / extracellularly glutamate-gated ion channel activity / adenylate cyclase binding / cellular response to organic cyclic compound / asymmetric synapse / G-protein alpha-subunit binding / regulation of receptor recycling / Unblocking of NMDA receptors, glutamate binding and activation / long-term memory / voltage-gated calcium channel activity / glutamate receptor binding / regulation of postsynaptic membrane potential / positive regulation of synaptic transmission / response to electrical stimulus / glutamate-gated receptor activity / presynaptic active zone membrane / response to fungicide / regulation of synaptic transmission, glutamatergic / cellular response to brain-derived neurotrophic factor stimulus / vesicle-mediated transport / somatodendritic compartment / synapse assembly / dendrite membrane / ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potential / ionotropic glutamate receptor binding / ionotropic glutamate receptor signaling pathway / dendrite cytoplasm / regulation of membrane potential / cytoskeletal protein binding / monoatomic ion transmembrane transport / positive regulation of synaptic transmission, glutamatergic / SNARE binding / dendritic shaft / response to cocaine / transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potential / synaptic membrane / synaptic transmission, glutamatergic / PDZ domain binding / cellular response to amino acid stimulus / postsynaptic density membrane / protein tetramerization / regulation of synaptic plasticity / modulation of chemical synaptic transmission / neuromuscular junction / Schaffer collateral - CA1 synapse / establishment of protein localization / terminal bouton / receptor internalization
Similarity search - Function
Voltage-dependent calcium channel, gamma-8 subunit / Cornichon / Cornichon, conserved site / Cornichon protein / Cornichon family signature. / Cornichon / PMP-22/EMP/MP20/Claudin family / Voltage-dependent calcium channel, gamma subunit / PMP-22/EMP/MP20/Claudin superfamily / Bacterial extracellular solute-binding proteins, family 3 ...Voltage-dependent calcium channel, gamma-8 subunit / Cornichon / Cornichon, conserved site / Cornichon protein / Cornichon family signature. / Cornichon / PMP-22/EMP/MP20/Claudin family / Voltage-dependent calcium channel, gamma subunit / PMP-22/EMP/MP20/Claudin superfamily / Bacterial extracellular solute-binding proteins, family 3 / Solute-binding protein family 3/N-terminal domain of MltF / Ionotropic glutamate receptor, metazoa / Ligated ion channel L-glutamate- and glycine-binding site / : / Ligand-gated ion channel / Ionotropic glutamate receptor, L-glutamate and glycine-binding domain / Ligated ion channel L-glutamate- and glycine-binding site / Ionotropic glutamate receptor / Eukaryotic homologues of bacterial periplasmic substrate binding proteins. / Receptor, ligand binding region / Receptor family ligand binding region / Periplasmic binding protein-like I
Similarity search - Domain/homology
CYCLOTHIAZIDE / GLUTAMIC ACID / 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE / Glutamate receptor 1 / Glutamate receptor 2 / Protein cornichon homolog 2 / Voltage-dependent calcium channel gamma-8 subunit
Similarity search - Component
Biological speciesRattus norvegicus (Norway rat)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.6 Å
AuthorsZhang, D. / Watson, J.F. / Matthews, P.M. / Cais, O. / Greger, I.H.
Funding support2items
OrganizationGrant numberCountry
Medical Research Council (MRC, United Kingdom)MC_U105174197
Biotechnology and Biological Sciences Research Council (BBSRC)BB/N002113/1
CitationJournal: Nature / Year: 2021
Title: Gating and modulation of a hetero-octameric AMPA glutamate receptor.
Authors: Danyang Zhang / Jake F Watson / Peter M Matthews / Ondrej Cais / Ingo H Greger /
Abstract: AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning. A diverse array of AMPAR signalling complexes are ...AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1-GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.
History
DepositionApr 26, 2021Deposition site: PDBE / Processing site: PDBE
Revision 1.0Jun 9, 2021Provider: repository / Type: Initial release
Revision 1.1Jun 16, 2021Group: Database references / Category: citation / Item: _citation.pdbx_database_id_PubMed / _citation.title
Revision 1.2Jun 30, 2021Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first / _citation.page_last

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-12806
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Isoform Flip of Glutamate receptor 1
B: Isoform Flip of Glutamate receptor 2
G: Protein cornichon homolog 2
I: Voltage-dependent calcium channel gamma-8 subunit
C: Isoform Flip of Glutamate receptor 1
E: Protein cornichon homolog 2
J: Voltage-dependent calcium channel gamma-8 subunit
D: Isoform Flip of Glutamate receptor 2
hetero molecules


Theoretical massNumber of molelcules
Total (without water)551,66342
Polymers528,9718
Non-polymers22,69234
Water0
1


  • Idetical with deposited unit
  • defined by author&software
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area49850 Å2
ΔGint-531 kcal/mol
Surface area95090 Å2
MethodPISA

-
Components

-
Isoform Flip of Glutamate receptor ... , 2 types, 4 molecules ACBD

#1: Protein Isoform Flip of Glutamate receptor 1 / GluR-1 / AMPA-selective glutamate receptor 1 / GluR-A / GluR-K1 / Glutamate receptor ionotropic / ...GluR-1 / AMPA-selective glutamate receptor 1 / GluR-A / GluR-K1 / Glutamate receptor ionotropic / AMPA 1 / GluA1


Mass: 102661.930 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Gria1, Glur1 / Production host: Homo sapiens (human) / References: UniProt: P19490
#2: Protein Isoform Flip of Glutamate receptor 2 / GluR-2 / AMPA-selective glutamate receptor 2 / GluR-B / GluR-K2 / Glutamate receptor ionotropic / ...GluR-2 / AMPA-selective glutamate receptor 2 / GluR-B / GluR-K2 / Glutamate receptor ionotropic / AMPA 2 / GluA2


Mass: 96247.055 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Gria2, Glur2 / Production host: Homo sapiens (human) / References: UniProt: P19491

-
Protein , 2 types, 4 molecules GEIJ

#3: Protein Protein cornichon homolog 2 / CNIH-2 / Cornichon family AMPA receptor auxiliary protein 2 / Cornichon-like protein


Mass: 22000.605 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Cnih2 / Production host: Homo sapiens (human) / References: UniProt: Q5BJU5
#4: Protein Voltage-dependent calcium channel gamma-8 subunit / Neuronal voltage-gated calcium channel gamma-8 subunit / Transmembrane AMPAR regulatory protein ...Neuronal voltage-gated calcium channel gamma-8 subunit / Transmembrane AMPAR regulatory protein gamma-8 / TARP gamma-8


Mass: 43576.004 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Cacng8 / Production host: Homo sapiens (human) / References: UniProt: Q8VHW5

-
Non-polymers , 3 types, 34 molecules

#5: Chemical
ChemComp-CYZ / CYCLOTHIAZIDE / 3-BICYCLO[2.2.1]HEPT-5-EN-2-YL-6-CHLORO-3,4- DIHYDRO-2H-1,2,4-BENZOTHIADIAZINE-7-SULFONAMIDE 1,1 DIOXIDE / Cyclothiazide


Mass: 389.878 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C14H16ClN3O4S2
#6: Chemical...
ChemComp-PC1 / 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE / 3-SN-PHOSPHATIDYLCHOLINE / Phosphatidylcholine


Mass: 790.145 Da / Num. of mol.: 26 / Source method: obtained synthetically / Formula: C44H88NO8P / Comment: phospholipid*YM
#7: Chemical
ChemComp-GLU / GLUTAMIC ACID / Glutamic acid


Type: L-peptide linking / Mass: 147.129 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C5H9NO4

-
Details

Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: GluA1/A2 heterotetramer in complex with auxiliary subunits TARP gamma 8 and CNIH2
Type: COMPLEX / Entity ID: #1-#4 / Source: RECOMBINANT
Molecular weightValue: 0.527 MDa / Experimental value: NO
Source (natural)Organism: Rattus norvegicus (Norway rat)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 8
SpecimenConc.: 3 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Details: Purified protein was first incubated with 300 uM cyclothiazide (CTZ) for at least 30 min on ice and then quickly mixed with 1 M L-glutamate stock solution to 100 mM final L-Glu concentration ...Details: Purified protein was first incubated with 300 uM cyclothiazide (CTZ) for at least 30 min on ice and then quickly mixed with 1 M L-glutamate stock solution to 100 mM final L-Glu concentration just before being loaded onto the grids.
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

EM software
IDNameCategory
2SerialEMimage acquisition
4GctfCTF correction
9PHENIXmodel refinement
10RELIONinitial Euler assignment
11RELIONfinal Euler assignment
12RELIONclassification
13RELION3D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C2 (2 fold cyclic)
3D reconstructionResolution: 3.6 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 120052 / Symmetry type: POINT
Atomic model buildingProtocol: RIGID BODY FIT / Space: REAL
Atomic model building
IDPDB-IDPdb chain-ID 3D fitting-ID
16QKC1
26PEQE1

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more