+
Open data
-
Basic information
Entry | Database: PDB / ID: 6zoj | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | SARS-CoV-2-Nsp1-40S complex, composite map | |||||||||||||||||||||||||||||||||||||||
![]() |
| |||||||||||||||||||||||||||||||||||||||
![]() | TRANSLATION / inhibitor / mRNA channel / 40S ribosomal subunit | |||||||||||||||||||||||||||||||||||||||
Function / homology | ![]() negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / protein tyrosine kinase inhibitor activity / IRE1-RACK1-PP2A complex ...negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / protein tyrosine kinase inhibitor activity / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity / nucleolus organization / positive regulation of Golgi to plasma membrane protein transport / TNFR1-mediated ceramide production / negative regulation of RNA splicing / negative regulation of DNA repair / supercoiled DNA binding / neural crest cell differentiation / positive regulation of ubiquitin-protein transferase activity / NF-kappaB complex / cysteine-type endopeptidase activator activity involved in apoptotic process / oxidized purine DNA binding / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / negative regulation of bicellular tight junction assembly / regulation of establishment of cell polarity / ubiquitin-like protein conjugating enzyme binding / negative regulation of phagocytosis / Formation of the ternary complex, and subsequently, the 43S complex / rRNA modification in the nucleus and cytosol / erythrocyte homeostasis / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / negative regulation of ubiquitin protein ligase activity / ion channel inhibitor activity / protein kinase A binding / Ribosomal scanning and start codon recognition / pigmentation / Translation initiation complex formation / positive regulation of mitochondrial depolarization / positive regulation of T cell receptor signaling pathway / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / positive regulation of activated T cell proliferation / monocyte chemotaxis / negative regulation of translational frameshifting / Protein hydroxylation / TOR signaling / BH3 domain binding / SARS-CoV-1 modulates host translation machinery / regulation of cell division / cellular response to ethanol / mTORC1-mediated signalling / iron-sulfur cluster binding / Peptide chain elongation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ubiquitin ligase inhibitor activity / Eukaryotic Translation Termination / positive regulation of signal transduction by p53 class mediator / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / negative regulation of ubiquitin-dependent protein catabolic process / protein serine/threonine kinase inhibitor activity / Viral mRNA Translation / negative regulation of respiratory burst involved in inflammatory response / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / Major pathway of rRNA processing in the nucleolus and cytosol / phagocytic cup / regulation of translational fidelity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Protein methylation / spindle assembly / Nuclear events stimulated by ALK signaling in cancer / ribosomal small subunit export from nucleus / positive regulation of intrinsic apoptotic signaling pathway / laminin binding / rough endoplasmic reticulum / translation regulator activity / positive regulation of cell cycle / translation initiation factor binding / gastrulation / Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal / negative regulation of protein binding / signaling adaptor activity / Maturation of protein E / Maturation of protein E / MDM2/MDM4 family protein binding / ER Quality Control Compartment (ERQC) / positive regulation of microtubule polymerization / DNA-(apurinic or apyrimidinic site) endonuclease activity / positive regulation of GTPase activity / Myoclonic epilepsy of Lafora / FLT3 signaling by CBL mutants / Prevention of phagosomal-lysosomal fusion / IRAK2 mediated activation of TAK1 complex Similarity search - Function | |||||||||||||||||||||||||||||||||||||||
Biological species | ![]() ![]() ![]() | |||||||||||||||||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.8 Å | |||||||||||||||||||||||||||||||||||||||
![]() | Schubert, K. / Karousis, E.D. / Jomaa, A. / Scaiola, A. / Echeverria, B. / Gurzeler, L.-A. / Leibundgut, M.L. / Thiel, V. / Muehlemann, O. / Ban, N. | |||||||||||||||||||||||||||||||||||||||
Funding support | ![]()
| |||||||||||||||||||||||||||||||||||||||
![]() | ![]() Title: SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Authors: Katharina Schubert / Evangelos D Karousis / Ahmad Jomaa / Alain Scaiola / Blanca Echeverria / Lukas-Adrian Gurzeler / Marc Leibundgut / Volker Thiel / Oliver Mühlemann / Nenad Ban / ![]() Abstract: The SARS-CoV-2 non-structural protein 1 (Nsp1), also referred to as the host shutoff factor, suppresses host innate immune functions. By combining cryo-electron microscopy and biochemistry, we show ...The SARS-CoV-2 non-structural protein 1 (Nsp1), also referred to as the host shutoff factor, suppresses host innate immune functions. By combining cryo-electron microscopy and biochemistry, we show that SARS-CoV-2 Nsp1 binds to the human 40S subunit in ribosomal complexes, including the 43S pre-initiation complex and the non-translating 80S ribosome. The protein inserts its C-terminal domain into the mRNA channel, where it interferes with mRNA binding. We observe translation inhibition in the presence of Nsp1 in an in vitro translation system and in human cells. Based on the high-resolution structure of the 40S-Nsp1 complex, we identify residues of Nsp1 crucial for mediating translation inhibition. We further show that the full-length 5' untranslated region of the genomic viral mRNA stimulates translation in vitro, suggesting that SARS-CoV-2 combines global inhibition of translation by Nsp1 with efficient translation of the viral mRNA to allow expression of viral genes. | |||||||||||||||||||||||||||||||||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | Molecule: ![]() ![]() |
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 1.7 MB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 1.3 MB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 1.2 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 1.2 MB | Display | |
Data in XML | ![]() | 144.3 KB | Display | |
Data in CIF | ![]() | 242.6 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 11320MC ![]() 6zokC ![]() 6zolC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
+40S ribosomal protein ... , 31 types, 31 molecules ABCDEFGHIJKLMNOPQRSTUVWXYZabcde
-Protein , 3 types, 3 molecules fgj
#33: Protein | Mass: 8453.150 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#34: Protein | Mass: 34857.355 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
#35: Protein | Mass: 19801.287 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() Gene: rep, 1a-1b / Production host: ![]() ![]() References: UniProt: P0DTD1, ubiquitinyl hydrolase 1, Hydrolases; Acting on peptide bonds (peptidases); Cysteine endopeptidases, SARS coronavirus main proteinase, RNA-directed RNA polymerase, DNA ...References: UniProt: P0DTD1, ubiquitinyl hydrolase 1, Hydrolases; Acting on peptide bonds (peptidases); Cysteine endopeptidases, SARS coronavirus main proteinase, RNA-directed RNA polymerase, DNA helicase, RNA helicase, Hydrolases; Acting on ester bonds; Exoribonucleases producing 5'-phosphomonoesters, Hydrolases; Acting on ester bonds, Transferases; Transferring one-carbon groups; Methyltransferases |
-RNA chain / Protein/peptide , 2 types, 2 molecules 2h
#1: RNA chain | Mass: 602777.875 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#36: Protein/peptide | Mass: 3473.451 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
-Non-polymers , 2 types, 169 molecules 


#37: Chemical | ChemComp-MG / #38: Chemical | |
---|
-Details
Has ligand of interest | N |
---|---|
Has protein modification | Y |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component |
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular weight | Units: MEGADALTONS / Experimental value: NO | ||||||||||||||||||||||||
Source (natural) |
| ||||||||||||||||||||||||
Source (recombinant) | Organism: ![]() ![]() | ||||||||||||||||||||||||
Buffer solution | pH: 7.6 | ||||||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE-PROPANE / Humidity: 100 % / Chamber temperature: 277.15 K |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD |
Image recording | Electron dose: 60 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
Software | Name: PHENIX / Version: 1.18.2_3874: / Classification: refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM software | Name: PHENIX / Category: model refinement | ||||||||||||||||||||||||
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
3D reconstruction | Resolution: 2.8 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 118765 / Symmetry type: POINT | ||||||||||||||||||||||||
Refine LS restraints |
|