[English] 日本語
Yorodumi
- PDB-6t7c: Structure of two copies of human Sox11 transcription factor in co... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6t7c
TitleStructure of two copies of human Sox11 transcription factor in complex with a nucleosome
Components
  • (DNA (147-MER)) x 2
  • Histone H2A type 1-B/E
  • Histone H2B type 1-K
  • Histone H3.2
  • Histone H4
  • Transcription factor SOX-11
KeywordsNUCLEAR PROTEIN / Nucleosome / DNA / histones / Sox11 / transcription factor / pioneer factor
Function / homology
Function and homology information


closure of optic fissure / positive regulation of lens epithelial cell proliferation / soft palate development / cornea development in camera-type eye / positive regulation of hippo signaling / noradrenergic neuron differentiation / negative regulation of transcription regulatory region DNA binding / negative regulation of lymphocyte proliferation / hard palate development / lens morphogenesis in camera-type eye ...closure of optic fissure / positive regulation of lens epithelial cell proliferation / soft palate development / cornea development in camera-type eye / positive regulation of hippo signaling / noradrenergic neuron differentiation / negative regulation of transcription regulatory region DNA binding / negative regulation of lymphocyte proliferation / hard palate development / lens morphogenesis in camera-type eye / embryonic skeletal system morphogenesis / regulation of transforming growth factor beta receptor signaling pathway / embryonic digestive tract morphogenesis / neuroepithelial cell differentiation / oligodendrocyte development / sympathetic nervous system development / positive regulation of hormone secretion / positive regulation of BMP signaling pathway / positive regulation of ossification / positive regulation of neurogenesis / negative regulation of glial cell proliferation / spinal cord development / ventricular septum morphogenesis / lung morphogenesis / positive regulation of stem cell proliferation / eyelid development in camera-type eye / outflow tract morphogenesis / skeletal muscle cell differentiation / anatomical structure morphogenesis / positive regulation of osteoblast differentiation / glial cell proliferation / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / Meiotic synapsis / positive regulation of neuron differentiation / telomere organization / RNA Polymerase I Promoter Opening / Interleukin-7 signaling / SUMOylation of chromatin organization proteins / Assembly of the ORC complex at the origin of replication / DNA methylation / Condensation of Prophase Chromosomes / HCMV Late Events / Chromatin modifications during the maternal to zygotic transition (MZT) / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / SIRT1 negatively regulates rRNA expression / innate immune response in mucosa / PRC2 methylates histones and DNA / kidney development / Defective pyroptosis / HDACs deacetylate histones / RNA Polymerase I Promoter Escape / Nonhomologous End-Joining (NHEJ) / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / NoRC negatively regulates rRNA expression / B-WICH complex positively regulates rRNA expression / HDMs demethylate histones / DNA Damage/Telomere Stress Induced Senescence / Metalloprotease DUBs / neuron differentiation / PKMTs methylate histone lysines / RMTs methylate histone arginines / Meiotic recombination / Pre-NOTCH Transcription and Translation / nucleosome assembly / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / Transcriptional regulation of granulopoiesis / structural constituent of chromatin / UCH proteinases / nucleosome / antimicrobial humoral immune response mediated by antimicrobial peptide / E3 ubiquitin ligases ubiquitinate target proteins / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / RUNX1 regulates transcription of genes involved in differentiation of HSCs / nervous system development / chromatin organization / Factors involved in megakaryocyte development and platelet production / Processing of DNA double-strand break ends / HATs acetylate histones / antibacterial humoral response / Senescence-Associated Secretory Phenotype (SASP) / DNA-binding transcription activator activity, RNA polymerase II-specific / Oxidative Stress Induced Senescence / killing of cells of another organism / Estrogen-dependent gene expression
Similarity search - Function
Transcription factor SOX-12/11/4 / High mobility group box domain / DNA Binding (I), subunit A / HMG (high mobility group) box / Histone, subunit A / HMG boxes A and B DNA-binding domains profile. / Histone, subunit A / high mobility group / High mobility group box domain / High mobility group box domain superfamily ...Transcription factor SOX-12/11/4 / High mobility group box domain / DNA Binding (I), subunit A / HMG (high mobility group) box / Histone, subunit A / HMG boxes A and B DNA-binding domains profile. / Histone, subunit A / high mobility group / High mobility group box domain / High mobility group box domain superfamily / Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site / Histone H4 signature. / Histone H4 / Histone H4 / CENP-T/Histone H4, histone fold / Centromere kinetochore component CENP-T histone fold / TATA box binding protein associated factor / TATA box binding protein associated factor (TAF), histone-like fold domain / Histone H3 signature 1. / Histone H3 signature 2. / Histone H3 / Histone H3/CENP-A / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Histone-fold / Orthogonal Bundle / Mainly Alpha
Similarity search - Domain/homology
DNA / DNA (> 10) / DNA (> 100) / Histone H2B type 1-K / Histone H2A type 1-B/E / Transcription factor SOX-11 / Histone H4 / Histone H3.2
Similarity search - Component
Biological speciesHomo sapiens (human)
synthetic construct (others)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4 Å
AuthorsDodonova, S.O. / Zhu, F. / Dienemann, C. / Taipale, J. / Cramer, P.
Funding support Germany, 3items
OrganizationGrant numberCountry
European Research Council (ERC)693023 Germany
European Molecular Biology Organization (EMBO)ALTF-949-2016 Germany
Volkswagen Foundation Germany
CitationJournal: Nature / Year: 2020
Title: Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function.
Authors: Svetlana O Dodonova / Fangjie Zhu / Christian Dienemann / Jussi Taipale / Patrick Cramer /
Abstract: 'Pioneer' transcription factors are required for stem-cell pluripotency, cell differentiation and cell reprogramming. Pioneer factors can bind nucleosomal DNA to enable gene expression from regions ...'Pioneer' transcription factors are required for stem-cell pluripotency, cell differentiation and cell reprogramming. Pioneer factors can bind nucleosomal DNA to enable gene expression from regions of the genome with closed chromatin. SOX2 is a prominent pioneer factor that is essential for pluripotency and self-renewal of embryonic stem cells. Here we report cryo-electron microscopy structures of the DNA-binding domains of SOX2 and its close homologue SOX11 bound to nucleosomes. The structures show that SOX factors can bind and locally distort DNA at superhelical location 2. The factors also facilitate detachment of terminal nucleosomal DNA from the histone octamer, which increases DNA accessibility. SOX-factor binding to the nucleosome can also lead to a repositioning of the N-terminal tail of histone H4 that includes residue lysine 16. We speculate that this repositioning is incompatible with higher-order nucleosome stacking, which involves contacts of the H4 tail with a neighbouring nucleosome. Our results indicate that pioneer transcription factors can use binding energy to initiate chromatin opening, and thereby facilitate nucleosome remodelling and subsequent transcription.
History
DepositionOct 21, 2019Deposition site: PDBE / Processing site: PDBE
Revision 1.0Apr 29, 2020Provider: repository / Type: Initial release
Revision 1.1May 13, 2020Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.identifier_ORCID

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-10393
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Histone H3.2
B: Histone H4
C: Histone H2A type 1-B/E
D: Histone H2B type 1-K
E: Histone H3.2
F: Histone H4
G: Histone H2A type 1-B/E
H: Histone H2B type 1-K
I: DNA (147-MER)
J: DNA (147-MER)
K: Transcription factor SOX-11
L: Transcription factor SOX-11


Theoretical massNumber of molelcules
Total (without water)231,26312
Polymers231,26312
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: native gel electrophoresis
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Protein , 5 types, 10 molecules AEBFCGDHKL

#1: Protein Histone H3.2 / Histone H3/m / Histone H3/o


Mass: 15389.036 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: HIST2H3A, HIST2H3C, H3F2, H3FM, HIST2H3D / Plasmid: pET22b / Production host: Escherichia coli BL21(DE3) (bacteria) / Variant (production host): CodonPlus-RIL / References: UniProt: Q71DI3
#2: Protein Histone H4 /


Mass: 11394.426 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human)
Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, ...Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4
Plasmid: pET3a / Production host: Escherichia coli BL21(DE3) (bacteria) / Variant (production host): CodonPlus-RIL / References: UniProt: P62805
#3: Protein Histone H2A type 1-B/E / Histone H2A.2 / Histone H2A/a / Histone H2A/m


Mass: 16707.277 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: HIST1H2AB, H2AFM, HIST1H2AE, H2AFA / Plasmid: LIC-1B (MacroLabs) / Production host: Escherichia coli BL21(DE3) (bacteria) / Variant (production host): CodonPlus-RIL / References: UniProt: P04908
#4: Protein Histone H2B type 1-K / H2B K / HIRA-interacting protein 1


Mass: 13921.213 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: HIST1H2BK, H2BFT, HIRIP1 / Plasmid: pET22b / Production host: Escherichia coli BL21(DE3) (bacteria) / Variant (production host): CodonPlus-RIL / References: UniProt: O60814
#7: Protein Transcription factor SOX-11


Mass: 12856.941 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: SOX11 / Plasmid: LIC-1B (MacroLabs) / Production host: Escherichia coli BL21(DE3) (bacteria) / Variant (production host): CodonPlus-RIL / References: UniProt: P35716

-
DNA chain , 2 types, 2 molecules IJ

#5: DNA chain DNA (147-MER)


Mass: 45240.848 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others)
#6: DNA chain DNA (147-MER)


Mass: 45484.273 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others)

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeEntity IDParent-IDSource
1Structure of two copies of human Sox11 transcription factor in complex with a nucleosomeCOMPLEXall0MULTIPLE SOURCES
2Histones and Sox11COMPLEX#1-#4, #71RECOMBINANT
3DNACOMPLEX#5-#61RECOMBINANT
Molecular weightValue: 0.229 MDa / Experimental value: NO
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
22Homo sapiens (human)9606
33synthetic construct (others)32630
Source (recombinant)
IDEntity assembly-IDOrganismNcbi tax-ID
22Escherichia coli BL21(DE3) (bacteria)469008
33synthetic construct (others)32630
Buffer solutionpH: 7.5
Buffer component
IDConc.NameFormulaBuffer-ID
120 mMHEPES1
230 mMNaClSodium chloride1
31 mMEDTAEthylenediaminetetraacetic acid1
42 mMDTT1
SpecimenConc.: 0.15 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportDetails: 0.39 mB, 25 mA / Grid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R2/1
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 289 K
Details: The sample was applied onto glow-discharged Quantifoil holey carbon grids. The grids were blotted from both sides for 5-10 seconds at 16*C in a chamber at 100% humidity and plunge-frozen ...Details: The sample was applied onto glow-discharged Quantifoil holey carbon grids. The grids were blotted from both sides for 5-10 seconds at 16*C in a chamber at 100% humidity and plunge-frozen into liquid ethane using a manual plunger.

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Details: At least 50% of the data were collected at 25* stage tilt in order to partially compensate for preferred orientation of particles on the grid, and to improve angular distribution.
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal magnification: 130000 X / Nominal defocus max: 3500 nm / Nominal defocus min: 1000 nm / Cs: 2.7 mm / C2 aperture diameter: 100 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingElectron dose: 1.125 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Num. of grids imaged: 1
EM imaging opticsEnergyfilter name: GIF Bioquantum / Energyfilter slit width: 30 eV
Image scansMovie frames/image: 40

-
Processing

EM software
IDNameCategory
2EPUimage acquisition
4GctfCTF correction
9RELIONinitial Euler assignment
10RELIONfinal Euler assignment
11RELIONclassification
12RELION3D reconstruction
13PHENIXmodel refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C1 (asymmetric)
3D reconstructionResolution: 4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 109666 / Symmetry type: POINT
EM volume selectionDetails: 1733 vesicles and near-complete buds were picked from 61 tomograms. Subtomograms were extracted from the surface of the vesicles.
Num. of tomograms: 54 / Num. of volumes extracted: 2547
Atomic model buildingB value: 130 / Protocol: OTHER / Space: REAL
Atomic model buildingPDB-ID: 6FQ5

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more